The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes encode ~12,500 predicted proteins, a high proportion of which have long repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal rDNA element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal/fungal lineage after the plant/animal split, but Dictyostelium appears to have retained more of the diversity of the ancestral genome than either of these two groups.The amoebozoa are a richly diverse group of organisms whose genomes remain largely unexplored. The soil-dwelling social amoeba Dictyostelium discoideum has been actively studied for the past fifty years and has contributed greatly to our understanding of cellular motility, signalling and interaction 1 . For example, studies in Dictyostelium provided the first descriptions of a eukaryotic cell chemo-attractant and a cell-cell adhesion protein 2, 3 .Dictyostelium amoebae inhabit forest soil consuming bacteria and yeast, which they track by chemotaxis. Starvation, however, prompts the solitary cells to aggregate and to develop as a true multicellular organism, producing a fruiting body comprised of a cellular, cellulosic stalk supporting a bolus of spores. Thus, Dictyostelium has evolved mechanisms that direct the differentiation of a homogeneous population of cells into distinct cell types, regulate the proportions between tissues and orchestrate the construction of an effective structure for the dispersal of spores 4 . Many of the genes necessary for these processes in Dictyostelium were Eichinger et al. Page 2 Nature. Author manuscript; available in PMC 2006 January 27. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript also inherited by metazoa and fashioned through evolution for use within many different modes of development.The amoebozoa are also noteworthy as representing one of the earliest branches from the last common ancestor of all eukaryotes. Each of the surviving branches of the crown group of eukaryotes provides an example of the ways in which the ancestral genome has been sculpted and adapted by lineage-specific gene duplication, divergence and deletion. Comparison between representatives of these branches promises to shed light not only on the nature and content of the ancestral eukaryotic genome, but on the diversity of ways in which its components have been adapted to meet the needs of complex organisms. The genome of Dictyosteliu...
Evidence is presented for an unconventional protein secretion pathway that is conserved from yeast to Dictyostelium discoideum in which Acb1 may be sequestered into autophagosomal vesicles, which then fuse (either directly or indirectly) with the plasma membrane (see also the companion paper from Manjithaya et al. in this issue).
The role of myosin in the contraction of striated muscle cells is well known, but its importance in nonmuscle cells is not yet clear. The function of myosin in Dictyostelium discoideum has been investigated by isolating cells which specifically lack myosin heavy chain (MHC A) protein. Cells were transformed with a vector encoding RNA complementary to mhcA messenger RNA (antisense RNA). Stable transformants have a dramatic reduction in the amount of MHC A protein, grow slowly, and generate giant multinucleated progeny, indicating an impairment in cytokinesis. Surprisingly, the cells adhere to surfaces, extend pseudopods and are capable of ameboid locomotion. The developmental sequence that is initiated by starving cells is severely impaired by the lack of myosin. The cells are unable to form multicellular aggregates normally and do not undergo subsequent morphogenesis. By changing the food source from liquid medium to bacteria, expression of the endogenous mhcA messenger RNA can be increased relative to expression of antisense RNA. When grown in this way, the transformed cells accumulate MHC A protein, remain mononucleate, and proceed through development normally.
Evidence is presented for an unconventional protein secretion pathway that is conserved from yeast to Dictyostelium discoideum in which Acb1 may be sequestered into autophagosomal vesicles, which then fuse (either directly or indirectly) with the plasma membrane (see also the companion paper from Duran et al. in this issue).
Introduction of restriction enzyme along with linearized plasmid results in integration of plasmid DNA at genomic restriction sites in a high proportion of the resulting transformants. We have found that electroporating BamHI or EcoRI together with pyrS-6 plasmids cut with the same enzyme stimulates the efficiency of transformation in Dictyostelium discoideum more than 20-fold over the rate seen when plasmid DNA alone is introduced. Restriction enzyme-mediated integration generates insertions into genomic restriction sites in an apparently random manner, some of which cause mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.