Key Points Question What proportion of Medicaid beneficiaries in Kentucky would be included in community engagement (CE) requirements to maintain insurance coverage in the state’s Medicaid demonstration waiver program? Findings In this cross-sectional study, administrative records and survey data collected at the time of the originally intended demonstration waiver implementation date (July 2018) showed that more than 130 000 beneficiaries (40.2% of those included in the demonstration waiver) would likely be required to meet CE requirements. Of this group, approximately 48 000 (14.7% of individuals included in the overall waiver and 36.3% of individuals included in CE requirements) did not meet CE hours at baseline nor were likely to qualify for medical frailty and would have had to take on new activities to maintain benefits. Meaning The findings suggest that most beneficiaries of Medicaid in Kentucky who were included in CE requirements likely already meet required hours or qualify for an exemption for the program.
Background The COVID-19 pandemic has led to delays in patients seeking care for life-threatening conditions; however, its impact on treatment patterns for patients with metastatic cancer is unknown. We assessed the COVID-19 pandemic’s impact on time to treatment initiation and treatment selection for patients newly diagnosed with metastatic solid cancer. Methods We used an electronic health record-derived longitudinal database curated via technology-enabled abstraction to identify 14,136 US patients newly diagnosed with de novo or recurrent metastatic solid cancer between January 1 and July 31 in 2019 or 2020. Patients received care at approximately 280 predominantly community-based oncology practices. Controlled interrupted time series analyses assessed the impact of the COVID-19 pandemic period (April-July 2020) on time to treatment initiation, defined as the number of days from metastatic diagnosis to receipt of first-line systemic therapy, and use of myelosuppressive therapy. Results The adjusted probability of treatment within 30 days of diagnosis was similar across periods (January-March 2019 = 41.7%, 95% confidence interval [CI] = 32.2% to 51.1%; April-July 2019 = 42.6%, 95% CI = 32.4% to 52.7%; January-March 2020 = 44.5%, 95% CI = 30.4% to 58.6%; April-July 2020 = 46.8%, 95% CI = 34.6% to 59.0%; adjusted percentage-point difference-in-differences = 1.4%, 95% CI = -2.7% to 5.5%). Among 5,962 patients who received first-line systemic therapy, there was no association between the pandemic period and use of myelosuppressive therapy (adjusted percentage-point difference-in-differences= 1.6%, 95% CI = -2.6% to 5.8%). There was no meaningful effect modification by cancer type, race, or age. Conclusions Despite known pandemic-related delays in surveillance and diagnosis, the COVID-19 pandemic did not impact time to treatment initiation or treatment selection for patients with metastatic solid cancers.
PURPOSE Machine learning (ML) algorithms that incorporate routinely collected patient-reported outcomes (PROs) alongside electronic health record (EHR) variables may improve prediction of short-term mortality and facilitate earlier supportive and palliative care for patients with cancer. METHODS We trained and validated two-phase ML algorithms that incorporated standard PRO assessments alongside approximately 200 routinely collected EHR variables, among patients with medical oncology encounters at a tertiary academic oncology and a community oncology practice. RESULTS Among 12,350 patients, 5,870 (47.5%) completed PRO assessments. Compared with EHR- and PRO-only algorithms, the EHR + PRO model improved predictive performance in both tertiary oncology (EHR + PRO v EHR v PRO: area under the curve [AUC] 0.86 [0.85-0.87] v 0.82 [0.81-0.83] v 0.74 [0.74-0.74]) and community oncology (area under the curve 0.89 [0.88-0.90] v 0.86 [0.85-0.88] v 0.77 [0.76-0.79]) practices. CONCLUSION Routinely collected PROs contain added prognostic information not captured by an EHR-based ML mortality risk algorithm. Augmenting an EHR-based algorithm with PROs resulted in a more accurate and clinically relevant model, which can facilitate earlier and targeted supportive care for patients with cancer.
PURPOSE: Serious Illness Conversations (SICs) are structured conversations between clinicians and patients about prognosis, treatment goals, and end-of-life preferences. Although behavioral interventions may prompt earlier or more frequent SICs, their impact on the quality of SICs is unclear. METHODS: This was a secondary analysis of a randomized clinical trial ( NCT03984773 ) among 78 clinicians and 14,607 patients with cancer testing the impact of an automated mortality prediction with behavioral nudges to clinicians to prompt more SICs. We analyzed 318 randomly selected SICs matched 1:1 by clinicians (159 control and 159 intervention) to compare the quality of intervention vs. control conversations using a validated codebook. Comprehensiveness of SIC documentation was used as a measure of quality, with higher integer numbers of documented conversation domains corresponding to higher quality conversations. A conversation was classified as high-quality if its score was ≥ 8 of a maximum of 10. Using a noninferiority design, mixed effects regression models with clinician-level random effects were used to assess SIC quality in intervention vs. control groups, concluding noninferiority if the adjusted odds ratio (aOR) was not significantly < 0.9. RESULTS: Baseline characteristics of the control and intervention groups were similar. Intervention SICs were noninferior to control conversations (aOR 0.99; 95% CI, 0.91 to 1.09). The intervention increased the likelihood of addressing patient-clinician relationship (aOR = 1.99; 95% CI, 1.23 to 3.27; P < .01) and decreased the likelihood of addressing family involvement (aOR = 0.56; 95% CI, 0.34 to 0.90; P < .05). CONCLUSION: A behavioral intervention that increased SIC frequency did not decrease their quality. Behavioral prompts may increase SIC frequency without sacrificing quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.