We study potential games with continuous player sets, a class of games characterized by an externality symmetry condition.Examples of these games include random matching games with common payoffs and congestion games. We offer a simple description of equilibria which are locally stable under a broad class of evolutionary dynamics, and prove that behavior converges to Nash equilibrium from all initial conditions. W e consider a subclass of potential games in which evolution leads to efficient play. Finally, we show that the games studied here are the limits of convergent sequences of the finite player potential games studied by Monderer and Shapley [22].
We establish global convergence results for stochastic fictitious play for four classes of games: games with an interior ESS, zero sum games, potential games, and supermodular games. We do so by appealing to techniques from stochastic approximation theory, which relate the limit behavior of a stochastic process to the limit behavior of a differential equation defined by the expected motion of the process. The key result in our analysis of supermodular games is that the relevant differential equation defines a strongly monotone dynamical system. Our analyses of the other cases combine Lyapunov function arguments with a discrete choice theory result: that the choice probabilities generated by any additive random utility model can be derived from a deterministic model based on payoff perturbations that depend nonlinearly on the vector of choice probabilities.
We study a class of population games called stable games. These games are characterized by self-defeating externalities: when agents revise their strategies, the improvements in the payoffs of strategies to which revising agents are switching are always exceeded by the improvements in the payoffs of strategies which revising agents are abandoning. We prove that the set of Nash equilibria of a stable game is globally asymptotically stable under a wide range of evolutionary dynamics. Convergence results for stable games are not as general as those for potential games: in addition to monotonicity of the dynamics, integrability of the agents' revision protocols plays a key role.
Abstract. We investigate a class of reinforcement learning dynamics where players adjust their strategies based on their actions' cumulative payoffs over time -specifically, by playing mixed strategies that maximize their expected cumulative payoff minus a regularization term. A widely studied example is exponential reinforcement learning, a process induced by an entropic regularization term which leads mixed strategies to evolve according to the replicator dynamics. However, in contrast to the class of regularization functions used to define smooth best responses in models of stochastic fictitious play, the functions used in this paper need not be infinitely steep at the boundary of the simplex; in fact, dropping this requirement gives rise to an important dichotomy between steep and nonsteep cases. In this general framework, we extend several properties of exponential learning, including the elimination of dominated strategies, the asymptotic stability of strict Nash equilibria, and the convergence of time-averaged trajectories in zero-sum games with an interior Nash equilibrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.