The estimation and modeling of streambed hydraulic conductivity (K) is an emerging interest due to its connection to water quality, aquatic habitat, and groundwater recharge. Existing research has found ways to sample and measure K at specific sites and with laboratory tests. The challenge undertaken was to review progress, relevance, complexity in understanding and modeling via statistical and geostatistical approaches, literature gaps, and suggestions toward future needs. This article provides an overview of factors and processes influencing streambed hydraulic conductivity (K) and its role in the stream-aquifer interaction. During our synthesis, we discuss the influence of geological, hydrological, biological, and anthropogenic factors that lead to variability of streambed substrates. Literature examples document findings to specific sites that help to portray the role of streambed K and other interrelated factors in the modeling of hyporheic and groundwater flow systems. However, studies utilizing an integrated, comprehensive database are limited, restricting the ability of broader application and understanding. Examples of in situ and laboratory methods of estimating hydraulic conductivity suggest challenges in acquiring representative samples and comparing results, considering the anisotropy and heterogeneity of fluvial bed materials and geohydrological conditions. Arriving at realistic statistical and spatial inference based on field and lab data collected is challenging, considering the possible sediment sources, processes, and complexity. Recognizing that the K for a given particle size group includes several to many orders of magnitude, modeling of streambed K and groundwater interaction remain conceptual and experimental. Advanced geostatistical techniques offer a wide range of univariate or multi-variate interpolation procedures such as kriging and variogram analysis that can be applied to these complex systems. Research available from various studies has been instrumental in developing sampling options, recognizing the significance of fluvial dynamics, the potential for filtration, transfer, and storage of high-quality groundwater, and importance to aquatic habitat and refuge during extreme conditions. Efforts in the characterization of natural and anthropogenic conditions, substrate materials, sediment loading, colmation, and other details highlight the great complexity and perhaps need for a database to compile relevant data. The effects on streambed hydraulic conductivity due to anthropogenic disturbances (in-stream gravel mining, contaminant release, benthic activity, etc.) are the areas that still need focus. An interdisciplinary (hydro-geo-biological) approach may be necessary to characterize the magnitude and variability of streambed K and fluxes at local, regional scales.
Water yield, water supply and quality, wildlife habitat, and ecosystem productivity and services are important societal concerns for natural resource management in the 21 st century. Watershedscale ecohydrologic studies can provide needed context for addressing complex spatial and temporal dynamics of these functions and services. This study was conducted on the 5240 ha Turkey Creek watershed (WS 78) draining a 3 rd order stream on the Santee Experimental Forest within the South Carolina Atlantic Coastal Plain, USA. The study objectives were to present the hydrologic characteristics of this relatively undisturbed, except by a hurricane (Hugo, 1989), forested watershed and to discuss key elements for watershed management, including water resource assessment (WRM), modeling integrated water resources management, environmental assessment, land use planning, social impact assessment, and information management. Runoff coefficients, flow duration curves, flood and low flow frequency curves, surface and ground water yields were assessed as elements of the WRM. Results from the last 10 years of interdisciplinary studies have also advanced the understanding of coastal ecohydrologic characteristics and processes, water D. Amatya et al. 793 balance, and their modeling including the need of high resolution LiDAR data. For example, surface water dynamics were shown to be regulated primarily by the water table, dependent upon precipitation and evapotranspiration (ET). Analysis of pre-and post-Hugo streamflow data showed somewhat lower but insignificant (α = 0.05) mean annual flow but increased frequency of larger flows for the post-Hugo compared with the pre-Hugo level. However, there was no significant difference in mean annual ET, potentially indicating the resiliency of this coastal forest. Although the information from this study may be useful for comparison of coastal ecohydrologic issues, it is becoming increasingly clear that multi-site studies may be warranted to understand these complex systems in the face of climate change, sea level rise, and increasing development in coastal regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.