Systemic lupus erythematosus (SLE) is a complex, inflammatory autoimmune disease that affects multiple organ systems. We used global gene expression profiling of peripheral blood mononuclear cells to identify distinct patterns of gene expression that distinguish most SLE patients from healthy controls. Strikingly, about half of the patients studied showed dysregulated expression of genes in the IFN pathway. Furthermore, this IFN gene expression ''signature'' served as a marker for more severe disease involving the kidneys, hematopoetic cells, and͞or the central nervous system. These results provide insights into the genetic pathways underlying SLE, and identify a subgroup of patients who may benefit from therapies targeting the IFN pathway.
This paper provides a roadmap of development in the thermal and fabrication aspects of microchannels as applied in the microelectronics and other high heat-flux cooling applications. Microchannels are defined as flow passages that have hydraulic diameters in the range of 10 to 200 micrometers. The impetus for microchannel research was provided by the pioneering work of Tuckerman and Pease [1] at Stanford University in the early eighties. Since that time, this technology has received considerable attention in microelectronics and other major application areas, such as fuel cell systems and advanced heat sink designs. After reviewing the advancement in heat transfer technology from a historical perspective, advantages of using microchannels in high heat flux cooling applications is discussed, and research done on various aspects of microchannel heat exchanger performance is reviewed. Single-phase performance for liquids is expected to be still describable by the conventional equations; however the gas flow may be influenced by the rarefaction effects. Two-phase flow is another topic that is still under active research. The evolution of research into microchannel heat sinks has paralleled the advancements made in microfabrication technology. The earliest microchannels were built using anisotropic wet chemical etching techniques based on alkali solutions. While this method has been exploited successfully, it does impose certain restrictions on silicon wafer type and geometry. Recently, anisotropic dry etching processes have been developed that circumvent these restrictions. In addition, dry etching methods can be significantly faster and, from a manufacturing standpoint, create fewer contamination and waste treatment problems. Advances in fabrication technology will continue to fuel improvements in microchannel heat sink performance and cost for the foreseeable future. Some fabrication areas that may spur advances include new materials, high aspect ratio patterning techniques other than dry etching, active fluid flow elements, and micromolding.
This paper provides a roadmap of development in the thermal and fabrication aspects of microchannels as applied in microelectronics and other high heat-flux cooling applications. Microchannels are defined as flow passages that have hydraulic diameters in the range of 10 to 200 micrometers. The impetus for microchannel research was provided by the pioneering work of Tuckerman and Pease [1] at Stanford University in the early eighties. Since that time, this technology has received considerable attention in microelectronics and other major application areas, such as fuel cell systems and advanced heat sink designs.After reviewing the advancement in heat transfer technology from a historical perspective, the advantages of using microchannels in high heat flux cooling applications is discussed, and research done on various aspects of microchannel heat exchanger performance is reviewed. Single-phase performance for liquids is still expected to be describable by conventional equations; however, the gas flow may be influenced by rarefaction effects. Two-phase flow is another topic that is still under active research.The evolution of research in microchannel flow passages has paralleled the advancements made in fabrication technology. The earliest microchannels were built in silicon wafers by anisotropic wet chemical etching and sawing. While these methods have been exploited successfully, they impose a number of significant restrictions on channel geometry. A variety of advanced micromachining techniques have been developed since this early work. The current state of fabrication technology is reviewed, taxonomically organized, and found to offer many new possibilities for building microchannels. In particular anisotropic dry etching and other high aspect ratio techniques have removed many of the process-induced constraints on microchannel design. Other technologies such as surface micromachining, microstamping, hybridization, and system-on-chip integration will enable increasingly complex, highly functional heat transfer devices for the foreseeable future. It is also found that the formation of flow passages with hydraulic diameters below the microchannel regime will be readily possible with current fabrication techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.