Systemic lupus erythematosus (SLE) is a complex, inflammatory autoimmune disease that affects multiple organ systems. We used global gene expression profiling of peripheral blood mononuclear cells to identify distinct patterns of gene expression that distinguish most SLE patients from healthy controls. Strikingly, about half of the patients studied showed dysregulated expression of genes in the IFN pathway. Furthermore, this IFN gene expression ''signature'' served as a marker for more severe disease involving the kidneys, hematopoetic cells, and͞or the central nervous system. These results provide insights into the genetic pathways underlying SLE, and identify a subgroup of patients who may benefit from therapies targeting the IFN pathway.
In this paper, we present and study a class of graph partitioning algorithms that reduces the size of the graph by collapsing vertices and edges, we find a k-way partitioning of the smaller graph, and then we uncoarsen and refine it to construct a k-way partitioning for the original graph. These algorithms compute a k-way partitioning of a graph G = (V, E) in O(|E|) time, which is faster by a factor of O(log k) than previously proposed multilevel recursive bisection algorithms. A key contribution of our work is in finding a high-quality and computationally inexpensive refinement algorithm that can improve upon an initial k-way partitioning. We also study the effectiveness of the overall scheme for a variety of coarsening schemes. We present experimental results on a large number of graphs arising in various domains including finite element methods, linear programming, VLSI, and transportation. Our experiments show that this new scheme produces partitions that are of comparable or better quality than those produced by the multilevel bisection algorithm and requires substantially smaller time. Graphs containing up to 450,000 vertices and 3,300,000 edges can be partitioned in 256 domains in less than 40 s on a workstation such as SGI's Challenge. Compared with the widely used multilevel spectral bisection algorithm, our new algorithm is usually two orders of magnitude faster and produces partitions with substantially smaller edge-cut.
We investigate the use of dimensionality reduction to improve performance for a new class of data analysis software called "recommender systems". Recommender systems apply knowledge discovery techniques to the problem of making product recommendations during a live customer interaction. These systems are achieving widespread success in E-commerce nowadays, especially with the advent of the Internet. The tremendous growth of customers and products poses three key challenges for recommender systems in the E-commerce domain. These are: producing high quality recommendations, performing many recommendations per second for millions of customers and products, and achieving high coverage in the face of data sparsity. One successful recommender system technology is collaborative filtering, which works by matching customer preferences to other customers in making recommendations. Collaborative filtering has been shown to produce high quality recommendations, but the performance degrades with the number of customers and products. New recommender system technologies are needed that can quickly produce high quality recommendations, even for very largescale problems. This paper presents two different experiments where we have explored one technology called Singular Value Decomposition (SVD) to reduce the dimensionality of recommender system databases. Each experiment compares the quality of a recommender system using SVD with the quality of a recommender system using collaborative filtering. The first experiment compares the effectiveness of the two recommender systems at predicting consumer preferences based on a database of explicit ratings of products. The second experiment compares the effectiveness of the two recommender systems at producing Top-N lists based on a real-life customer purchase database from an E-Commerce site. Our experience suggests that SVD has the potential to meet many of the challenges of recommender systems, under certain conditions.
Among collaborative recommendation approaches, methods based on nearest-neighbors still enjoy a huge amount of popularity, due to their simplicity, their efficiency, and their ability to produce accurate and personalized recommendations. This chapter presents a comprehensive survey of neighborhood-based methods for the item recommendation problem. In particular, the main benefits of such methods, as well as their principal characteristics, are described. Furthermore, this document addresses the essential decisions that are required while implementing a neighborhood-based recommender system, and gives practical information on how to make such decisions. Finally, the problems of sparsity and limited coverage, often observed in large commercial recommender systems, are discussed, and a few solutions to overcome these problems are presented. IntroductionThe appearance and growth of online markets has had a considerable impact on the habits of consumers, providing them access to a greater variety of products and information on these goods. While this freedom of purchase has made online commerce into a multi-billion dollar industry, it also made it more difficult for consumers to select the products that best fit their needs. One of the main solutions proposed for this information overload problem are recommender systems, which provide automated and personalized suggestions of products to consumers. Recommender systems have been used in a wide variety of applications, such as the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.