We investigate the use of dimensionality reduction to improve performance for a new class of data analysis software called "recommender systems". Recommender systems apply knowledge discovery techniques to the problem of making product recommendations during a live customer interaction. These systems are achieving widespread success in E-commerce nowadays, especially with the advent of the Internet. The tremendous growth of customers and products poses three key challenges for recommender systems in the E-commerce domain. These are: producing high quality recommendations, performing many recommendations per second for millions of customers and products, and achieving high coverage in the face of data sparsity. One successful recommender system technology is collaborative filtering, which works by matching customer preferences to other customers in making recommendations. Collaborative filtering has been shown to produce high quality recommendations, but the performance degrades with the number of customers and products. New recommender system technologies are needed that can quickly produce high quality recommendations, even for very largescale problems. This paper presents two different experiments where we have explored one technology called Singular Value Decomposition (SVD) to reduce the dimensionality of recommender system databases. Each experiment compares the quality of a recommender system using SVD with the quality of a recommender system using collaborative filtering. The first experiment compares the effectiveness of the two recommender systems at predicting consumer preferences based on a database of explicit ratings of products. The second experiment compares the effectiveness of the two recommender systems at producing Top-N lists based on a real-life customer purchase database from an E-Commerce site. Our experience suggests that SVD has the potential to meet many of the challenges of recommender systems, under certain conditions.
Uaborative fltering systems help address information overload by using the opinions of users in a community to make personrd recommendations for douents to each user. h[any collaborative fltering systems have few user opinions relative to the large number of documents avtiabIe. W sparsity problem can reduce the utity of the~tering system by reducing the number of doments for v'hich the system can make recommendations and adversely~ecting the @ty of recommendations. This paper defines and implements a model for integrating content-based rutings into a coUabomtive fltering systm e fikerbot model~ows cohborative fikering systems to address sparsity by tapping the strength of content tering techniques. IVe iden@ and evrduate metrim for assessing the effectiveness of fikerbots specficfly, and Hterirtg system enhancements in gened.FWy, we exTerimen@y vfidate the fikerbot approach by showing that even simple flterbots such as speU checking can increase the UWW for users of sparsely poptiated co~aborative~tering systems.
This paper studies the problem of leveraging computationally intensive classification algorithms for large scale text categorization problems. We propose a hierarchical approach which decomposes the classification problem into a coarse level task and a fine level task. A simple yet scalable classifier is applied to perform the coarse level classification while a more sophisticated model is used to separate classes at the fine level. However, instead of relying on a human-defined hierarchy to decompose the problem, we we use a graph algorithm to discover automatically groups of highly similar classes. As an illustrative example, we apply our approach to real-world industrial data from eBay, a major e-commerce site where the goal is to classify live items into a large taxonomy of categories. In such industrial setting, classification is very challenging due to the number of classes, the amount of training data, the size of the feature space and the realworld requirements on the response time. We demonstrate through extensive experimental evaluation that (1) the proposed hierarchical approach is superior to flat models, and (2) the data-driven extraction of latent groups works significantly better than the existing human-defined hierarchy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.