Recommender systems have been evaluated in many, often incomparable, ways. In this article, we review the key decisions in evaluating collaborative filtering recommender systems: the user tasks being evaluated, the types of analysis and datasets being used, the ways in which prediction quality is measured, the evaluation of prediction attributes other than quality, and the user-based evaluation of the system as a whole. In addition to reviewing the evaluation strategies used by prior researchers, we present empirical results from the analysis of various accuracy metrics on one content domain where all the tested metrics collapsed roughly into three equivalence classes. Metrics within each equivalency class were strongly correlated, while metrics from different equivalency classes were uncorrelated.
We investigate the use of dimensionality reduction to improve performance for a new class of data analysis software called "recommender systems". Recommender systems apply knowledge discovery techniques to the problem of making product recommendations during a live customer interaction. These systems are achieving widespread success in E-commerce nowadays, especially with the advent of the Internet. The tremendous growth of customers and products poses three key challenges for recommender systems in the E-commerce domain. These are: producing high quality recommendations, performing many recommendations per second for millions of customers and products, and achieving high coverage in the face of data sparsity. One successful recommender system technology is collaborative filtering, which works by matching customer preferences to other customers in making recommendations. Collaborative filtering has been shown to produce high quality recommendations, but the performance degrades with the number of customers and products. New recommender system technologies are needed that can quickly produce high quality recommendations, even for very largescale problems. This paper presents two different experiments where we have explored one technology called Singular Value Decomposition (SVD) to reduce the dimensionality of recommender system databases. Each experiment compares the quality of a recommender system using SVD with the quality of a recommender system using collaborative filtering. The first experiment compares the effectiveness of the two recommender systems at predicting consumer preferences based on a database of explicit ratings of products. The second experiment compares the effectiveness of the two recommender systems at producing Top-N lists based on a real-life customer purchase database from an E-Commerce site. Our experience suggests that SVD has the potential to meet many of the challenges of recommender systems, under certain conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.