SUMMARY
Organ-specific functions of tissue-resident macrophages in the steady-state heart are unknown. Here we show that cardiac macrophages facilitate electrical conduction through the distal atrioventricular node, where conducting cells densely intersperse with elongated macrophages expressing connexin 43. When coupled to spontaneously beating cardiomyocytes via connexin 43-containing gap junctions, cardiac macrophages have a negative resting membrane potential and depolarize in synchrony with cardiomyocytes. Conversely, macrophages render the resting membrane potential of cardiomyocytes more positive and, according to computational modeling, accelerate their repolarization. Photostimulation of channelrhodopsin 2-expressing macrophages improves atrioventricular conduction, while conditional deletion of connexin 43 in macrophages and congenital lack of macrophages delay atrioventricular conduction. In the Cd11bDTR mouse, macrophage ablation induces progressive atrioventricular block. These observations implicate macrophages in normal and aberrant cardiac conduction.
Background
The site of origin and pattern of excitation within the human sinoatrial node (SAN) has not been directly mapped.
Objective
We hypothesized that the human SAN is functionally insulated from the surrounding atrial myocardium except for several exit pathways which electrically bridge the nodal tissue and atrial myocardium.
Methods
The SAN was optically mapped in coronary perfused preparations from non-failing human hearts (n=4, age 54±15 years) using dye Di-4-ANBDQBS and Blebbistatin. SAN 3D structure was reconstructed using histology.
Results
Optical recordings from the SAN had diastolic depolarization and multiple upstroke components, which corresponded to the separate excitations of the SAN and atrial layers. Excitation originated in the middle of the SAN (66±17 BPM), then slowly (1–18 cm/s) and anisotropically spread. After a 82±17 ms conduction delay within the SAN, the atrial myocardium was excited via superior, middle, and/or inferior sinoatrial conduction pathways. Atrial excitation was initiated 9.4±4.2 mm from the leading pacemaker site. The oval 14.3±1.5 × 6.7±1.6 × 1.0±0.2 mm SAN structure was functionally insulated from the atrium by connective tissue, fat, and coronary arteries, except for these pathways.
Conclusion
These data demonstrated for the first time the location of the leading SAN pacemaker site, the pattern of excitation within the human SAN, and the conduction pathways into the right atrium. The existence of these pathways explained why, even during normal sinus rhythm, atrial breakthroughs could arise from a region parallel to the CT that is significantly larger (26.0±7.8 mm) than the area of the anatomically defined SAN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.