Maple syrup urine disease (MSUD) is an inherited disorder of branched-chain amino acid metabolism presenting with life-threatening cerebral oedema and dysmyelination in affected individuals. Treatment requires life-long dietary restriction and monitoring of branched-chain amino acids to avoid brain injury. Despite careful management, children commonly suffer metabolic decompensation in the context of catabolic stress associated with non-specific illness. The mechanisms underlying this decompensation and brain injury are poorly understood. Using recently developed mouse models of classic and intermediate maple syrup urine disease, we assessed biochemical, behavioural and neuropathological changes that occurred during encephalopathy in these mice. Here, we show that rapid brain leucine accumulation displaces other essential amino acids resulting in neurotransmitter depletion and disruption of normal brain growth and development. A novel approach of administering norleucine to heterozygous mothers of classic maple syrup urine disease pups reduced branched-chain amino acid accumulation in milk as well as blood and brain of these pups to enhance survival. Similarly, norleucine substantially delayed encephalopathy in intermediate maple syrup urine disease mice placed on a high protein diet that mimics the catabolic stress shown to cause encephalopathy in human maple syrup urine disease. Current findings suggest two converging mechanisms of brain injury in maple syrup urine disease including: (i) neurotransmitter deficiencies and growth restriction associated with branched-chain amino acid accumulation and (ii) energy deprivation through Krebs cycle disruption associated with branched-chain ketoacid accumulation. Both classic and intermediate models appear to be useful to study the mechanism of brain injury and potential treatment strategies for maple syrup urine disease. Norleucine should be further tested as a potential treatment to prevent encephalopathy in children with maple syrup urine disease during catabolic stress.
In the autosomal recessive human disease, glutaric aciduria type I (GA-1), glutaryl-CoA dehydrogenase (GCDH) deficiency disrupts the mitochondrial catabolism of lysine and tryptophan. Affected individuals accumulate glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) in the serum and often suffer acute striatal injury in childhood. Prior attempts to produce selective striatal vulnerability in an animal model have been unsuccessful. We hypothesized that acute striatal injury may be induced in GCDH-deficient (Gcdh-/-) mice by elevated dietary protein and lysine. Here, we show that high protein diets are lethal to 4-week-old and 8-week-old Gcdh-/- mice within 2-3 days and 7-8 days, respectively. High lysine alone resulted in vasogenic oedema and blood-brain barrier breakdown within the striatum, associated with serum and tissue GA accumulation, neuronal loss, haemorrhage, paralysis, seizures and death in 75% of 4-week-old Gcdh-/- mice after 3-12 days. In contrast, most 8-week-old Gcdh-/- mice survived on high lysine, but developed white matter lesions, reactive astrocytes and neuronal loss after 6 weeks. Thus, the Gcdh-/- mouse exposed to high protein or lysine may be a useful model of human GA-1 including developmentally dependent striatal vulnerability.
Glutaric acidemia type I (GA-I) is an inherited disorder of lysine and tryptophan metabolism presenting with striatal lesions anatomically and symptomatically similar to Huntington disease. Affected children commonly suffer acute brain injury in the context of a catabolic state associated with nonspecific illness. The mechanisms underlying injury and age-dependent susceptibility have been unknown, and lack of a diagnostic marker heralding brain injury has impeded intervention efforts. Using a mouse model of GA-I, we show that pathologic events began in the neuronal compartment while enhanced lysine accumulation in the immature brain allowed increased glutaric acid production resulting in age-dependent injury. Glutamate and GABA depletion correlated with brain glutaric acid accumulation and could be monitored in vivo by proton nuclear magnetic resonance ( 1 H NMR) spectroscopy as a diagnostic marker. Blocking brain lysine uptake reduced glutaric acid levels and brain injury. These findings provide what we believe are new monitoring and treatment strategies that may translate for use in human GA-I.
Skvorak and coworkers [1] demonstrated the therapeutic efficacy of HTx in a murine model of iMSUD, confirming significant metabolic improvement and survival. To determine the effect of HTx on extrahepatic organs, we examined the metabolic effects of HTx in brain from iMSUD animals. Amino acid analysis revealed that HTx corrected increased ornithine, partially corrected depleted glutamine, and revealed a trend toward alloisoleucine correction. For amino acid and monoamine neurotransmitters, decreased GABA was partially corrected with HTx, while the L-histidine dipeptide of GABA, homocarnosine, was decreased in iMSUD mice and hypercorrected following HTx. Elevated branched chain amino acids (BCAA; leucine, isoleucine, valine) in MSUD can deplete brain tyrosine and tryptophan (the precursors of monoamine neurotransmitters dopamine (DA) and serotonin (5-hydroxytryptamine; 5-HT)) through competition via the large neutral amino acid transporter. HTx corrected decreased DA levels and the DA metabolite, 3-methoxytyramine, and partially corrected the DA intermediate 3,4-dihydroxyphenylacetate (DOPAC) and 5-HT levels, despite normal tyrosine and tryptophan levels in iMSUD mouse brain. We further observed enhanced intracellular turnover of both DA and 5-HT in iMSUD mouse brain, both of which partially corrected with HTx. Our results suggest new pathomechanisms of neurotransmitter metabolism in this disorder and support the therapeutic relevance of HTx in iMSUD mice, while providing proof-of-principle that HTx has corrective potential in extrahepatic organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.