In a spontaneously bursting neuronal network in vitro, chaos can be demonstrated by the presence of unstable fixed-point behaviour. Chaos control techniques can increase the periodicity of such neuronal population bursting behaviour. Periodic pacing is also effective in entraining such systems, although in a qualitatively different fashion. Using a strategy of anticontrol such systems can be made less periodic. These techniques may be applicable to in vivo epileptic foci.
The extreme sensitivity to initial conditions that chaotic systems display makes them unstable and unpredictable. Yet that same sensitivity also makes them highly susceptible to control, provided that the developing chaos can be analyzed in real time and that analysis is then used to make small control interventions. This strategy has been used here to stabilize cardiac arrhythmias induced by the drug ouabain in rabbit ventricle. By administering electrical stimuli to the heart at irregular times determined by chaos theory, the arrhythmia was converted to periodic beating.
Sudden cardiac death is the leading cause of death in the industrialized world, with the majority of such tragedies being due to ventricular fibrillation. Ventricular fibrillation is a frenzied and irregular disturbance of the heart rhythm that quickly renders the heart incapable of sustaining life. Rotors, electrophysiological structures that emit rotating spiral waves, occur in several systems that all share with the heart the functional properties of excitability and refractoriness. These re-entrant waves, seen in numerical solutions of simplified models of cardiac tissue, may occur during ventricular tachycardias. It has been difficult to detect such forms of re-entry in fibrillating mammalian ventricles. Here we show that, in isolated perfused dog hearts, high spatial and temporal resolution mapping of optical transmembrane potentials can easily detect transiently erupting rotors during the early phase of ventricular fibrillation. This activity is characterized by a relatively high spatiotemporal cross-correlation. During this early fibrillatory interval, frequent wavefront collisions and wavebreak generation are also dominant features. Interestingly, this spatiotemporal pattern undergoes an evolution to a less highly spatially correlated mechanism that lacks the epicardial manifestations of rotors despite continued myocardial perfusion.
We enhance the response of a "stochastic resonator" by coupling it into a chain of identical resonators. Specifically, we show via numerical simulation that local linear coupling of overdamped nonlinear oscillators significantly enhances the signal-to-noise ratio of the response of a single oscillator to a time-periodic signal and noise. We relate this array enhanced stochastic resonance to the global spatiotemporal dynamics of the array and show how noise, coupling, and bistable potential cooperate to organize spatial order, temporal periodicity, and peak signal-to-noise ratio.
Stochastic resonance, a nonlinear phenomenon in which random noise optimizes a system's response to a signal, has been postulated to provide a role for noise in information processing in the brain. In these experiments, a time varying electric field was used to deliver both signal and noise directly to a network of neurons from mammalian brain. As the magnitude of the stochastic component of the field was increased, resonance was observed in the response of the neuronal network to a weak periodic signal. This is the first demonstration of stochastic resonance in neuronal networks from the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.