We obtain new inequalities for the Fourier transform, both on Euclidean space, and on non-compact, rank one symmetric spaces. In both cases these are expressed as a gauge on the size of the transform in terms of a suitable integral modulus of continuity of the function. In all settings, the results present a natural corollary: a quantitative form of the Riemann-Lebesgue lemma. A prototype is given in one-dimensional Fourier analysis.
A fundamental theme in classical Fourier analysis relates smoothness properties of functions to the growth and/or integrability of their Fourier transform. By using a suitable class of L p − multipliers, a rather general inequality controlling the size of Fourier transforms for large and small argument is proved. As consequences, quantitative Riemann-Lebesgue estimates are obtained and an integrability result for the Fourier transform is developed extending ideas used by Titchmarsh in the one dimensional setting.2000 Mathematics Subject Classification. 42B10, 42B15.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.