Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes.
Mapping the multidimensional energy landscape of photosynthetic systems is crucial for understanding their high efficiencies. Multidimensional coherent spectroscopy is well suited to this task but has difficulty distinguishing between vibrational and electronic degrees of freedom. In pigment−protein complexes, energy differences between vibrations within a single electronic manifold are similar to differences between electronic states, leading to ambiguous assignments of spectral features and diverging physical interpretations. An important control experiment is that of the pigment monomer, but previous attempts using multidimensional coherent spectroscopy lacked the sensitivity to capture the relevant spectroscopic signatures. Here we apply a variety of methods to rapidly acquire 3D electronic−vibrational spectra in seconds, leading to a mapping of the vibrational states of Bacteriochlorophyll a (BChla) in solution. Using this information, we can distinguish features of proteins containing BChla from the monomer subunit and show that many of the previously reported contentious spectral signatures are vibrations of individual pigments.
Multidimensional coherent spectroscopy provides insights into the vibronic structure and dynamics of complex systems. In general, the higher the dimensionality, the better the spectral discrimination and the more information that may be extracted about the system. A major impediment to widespread implementation of these methods, however, is that the acquisition time generally increases exponentially with dimensionality, prohibiting practical implementation. We demonstrate the use of nonuniform sampling based on the projection-slice theorem and inverse Radon transform within the context of a fifth-order, 4D technique (GAMERS) designed to correlate the vibrational contributions to different electronic states. Projection-reconstruction (PRO GAMERS) greatly reduces the data sampling requirements without sacrificing frequency resolution. The sensitivity of this technique is demonstrated to surpass conventional uniform sampling by orders of magnitude. The incorporation of projection-reconstruction into multidimensional coherent spectroscopy opens up the possibility to study the structure of complex chemical, biological, and physical systems with unprecedented detail.
Vibrations play a critical role in many photochemical and photophysical processes in which excitations reside on the electronically excited state. However, difficulty in assigning signals from spectroscopic measurements uniquely to a specific electronic state, ground or otherwise, has exposed limitations to their physical interpretation. Here, we demonstrate the selective excitation of vibrational coherences on the ground electronic state through impulsive Raman scattering, whose weak fifth-order signal is resonantly enhanced by coupling to strong electronic transitions. The six-wave mixing signals measured using this technique are free of lower-order cascades and represent correlations between zero-quantum vibrational coherences in the ground state and single-quantum coherences between the ground and electronic states. We believe that this technique has the potential to shed much-needed insight onto some of the mysteries regarding the origin of long-lived coherences observed in photosynthetic and other coupled chromophore systems.
We demonstrate that high-dimensionality coherent spectroscopy yields "super-resolved" spectra whereby peaks may be localized far below their homogeneous line width by resolving them across multiple, coherently coupled dimensions. We implement this technique using a fifth-order photon-echo spectroscopy called Gradient-Assisted Multidimensional Electronic-Raman Spectroscopy (GAMERS) that combines resonant and nonresonant excitation to disperse the optical response across three spectral dimensions: two involving excitonic transitions and one that encodes phonon energies. In analogy to super-resolution localization microscopies, which separate spatially overlapping signals in time, GAMERS isolates signals spectrally using combined electronic and nuclear resolution. Optical phonon lines in a colloidal solution of CdSe quantum dots at room temperature separated by less than 150 μeV are resolved despite the homogeneous line width of these transitions being nearly an order of magnitude broader. The frequency difference between these phonon modes is attributed to softening of the longitudinal phonon mode upon excitation to the lowest exciton state. Further, such phonon mode selectivity yields spectra with electronic line widths that approach the single particle limit. Through this enhanced spectral resolution, the GAMERS method yields insights into the nature of coupling between longitudinal optical and acoustic phonons and specific excitonic transitions that were previously hidden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.