Results of high precision analysis of Ti concentration ([Ti]) in quartz representing different recrystallization microstructures in a suite of progressively deformed quartzite mylonites show the effect of recrystallization on distribution of Ti in quartz. Petrographic observations and ion microprobe analysis reveals three texturally and geochemically distinct quartz microstructures in mylonites: (1) cores of recrystallized quartz ribbons preserve the highest [Ti] and are interpreted to have recrystallized via grain boundary migration recrystallization, (2) recrystallized rims and grain margins preserve a lower and more variable [Ti] and are interpreted to reflect the combined influence of subgrain rotation and bulging recrystallization, and (3) neocrystallized quartz precipitated in dilatancy sites has low ( 1 ppm) [Ti], reflecting the Ti content of the syndeformational fluid. Muscovite in nonmylonitic quartzite (at the base of the sampling traverse) is compositionally zoned, whereas muscovite in mylonitic quartzite shows a progressive decreasing in zoning in higher strain samples. Threedimensional phase distribution mapping using X-ray computed tomography analysis of rock hand samples reveals that Ti-bearing accessory phases are less abundant and more dispersed in higher strained mylonites compared to nonmylonitic quartzite. This study demonstrates the influence of dynamic recrystallization on Ti substitution in quartz and evaluates the Ti buffering capacity of aqueous fluids (meteoric versus metamorphic/ magmatic) as well as the distribution and reactivity of Ti-bearing accessory phases in a deforming quartzite. Results of this study suggest that Ti-in-quartz thermobarometry of deformed quartz is a sensitive technique for resolving the multistage history of quartz deformation and recrystallization in crustal shear zones.
We conducted deformation experiments on Ti‐doped quartz aggregates to investigate the effect of crystal‐plastic deformation and dynamic recrystallization on Ti substitution in quartz. Shear experiments were conducted at 1.0 GPa and 900°C at a constant shear strain rate (~5 × 10−6 s−1) for progressively longer intervals of time (24, 48, and 72 h). Equivalent experiments were conducted under hydrostatic stress to compare the effect of deformation relative to static crystallization. A novel quartz‐doping technique is used to synthesize a quartz aggregate consisting of two layers with Ti concentrations above and below the predicted solubility level for the experimental conditions. Samples deformed to progressively higher shear strain by dislocation creep accommodated by a combination of subgrain rotation and grain boundary migration recrystallization show a strengthening of the crystallographic preferred orientation that correlates with a progressive evolution of Ti concentrations. Quartz grains in the highest strain, most strongly recrystallized samples have Ti concentrations that are most similar to undeformed quartz grown in hydrostatic annealing experiments. Cathodoluminescence (CL) analysis of intragrain variations in Ti content reveals core and rim zoning present in the starting material that becomes progressively homogenized with increasing strain—recrystallized quartz in the highest‐strain samples exhibits a uniform CL signal. We conclude that dynamic recrystallization enhances the kinetics of trace element equilibration in quartz, illustrating that Ti‐in‐quartz thermobarometry is capable of recording the conditions of ductile shearing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.