Mathematical modeling of nystagmus oscillations is a technique with applications in diagnostics, treatment evaluation, and acuity testing. Modeling is a powerful tool for the analysis of nystagmus oscillations but quality assessment of the input data is needed in order to avoid misinterpretation of the modeling results. In this work, we propose a signal quality metric for nystagmus waveforms, the
normalized segment error
(NSE). The NSE is based on the energy in the error signal between the observed oscillations and a reconstruction from a harmonic sinusoidal model called the
normalized waveform model
(NWM). A threshold for discrimination between nystagmus oscillations and disturbances is estimated using simulated signals and receiver operator characteristics (ROC). The ROC is optimized to find noisy segments and abrupt waveform and frequency changes in the simulated data that disturb the modeling. The discrimination threshold,
𝜖
, obtained from the ROC analysis, is applied to real recordings of nystagmus data in order to determine whether a segment is of high quality or not. The NWM parameters from both the simulated dataset and the nystagmus recordings are analyzed for the two classes suggested by the threshold. The optimized
𝜖
yielded a true-positive rate and a false-positive rate of 0.97 and 0.07, respectively, for the simulated data. The results from the NWM parameter analysis show that they are consistent with the known values of the simulated signals, and that the method estimates similar model parameters when performing analysis of repeated recordings from one subject.
Eye tracking is a useful tool when studying the oscillatory eye movements associated with nystagmus. However, this oscillatory nature of nystagmus is problematic during calibration since it introduces uncertainty about where the person is actually looking. This renders comparisons between separate recordings unreliable. Still, the influence of the calibration protocol on eye movement data from people with nystagmus has not been thoroughly investigated. In this work, we propose a calibration method using Procrustes analysis in combination with an outlier correction algorithm, which is based on a model of the calibration data and on the geometry of the experimental setup. The proposed method is compared to previously used calibration polynomials in terms of accuracy, calibration plane distortion and waveform robustness. Six recordings of calibration data, validation data and optokinetic nystagmus data from people with nystagmus and seven recordings from a control group were included in the study. Fixation errors during the recording of calibration data from the healthy participants were introduced, simulating fixation errors caused by the oscillatory movements found in nystagmus data. The outlier correction algorithm improved the accuracy for all tested calibration methods. The accuracy and calibration plane distortion performance of the Procrustes analysis calibration method were similar to the top performing mapping functions for the simulated fixation errors. The performance in terms of waveform robustness was superior for the Procrustes analysis calibration compared to the other calibration methods. The overall performance of the Procrustes calibration methods was best for the datasets containing errors during the calibration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.