Chronic morphine administration (via subcutaneous pellet) decreases the size of dopamine neurons in the ventral tegmental area (VTA), a key reward region in the brain, yet the molecular basis and functional consequences of this effect are unknown. In this study, we used viral-mediated gene transfer in rat to show that chronic morphine-induced downregulation of the insulin receptor substrate 2 (IRS2)-thymoma viral proto-oncogene (Akt) signaling pathway in the VTA mediates the decrease in dopamine cell size seen after morphine exposure and that this downregulation diminishes morphine reward, as measured by conditioned place preference. We further show that the reduction in size of VTA dopamine neurons persists up to 2 weeks after morphine withdrawal, which parallels the tolerance to morphine's rewarding effects caused by previous chronic morphine exposure. These findings directly implicate the IRS2-Akt signaling pathway as a critical regulator of dopamine cell morphology and opiate reward.
Highlights d MeCP2 represses transcription of highly methylated long genes through NCoR d Direct measurements of transcriptional initiation and elongation rates in the mouse brain d MeCP2 reduces transcriptional initiation, not elongation, of highly methylated long genes d Gene body-TSS contacts position distal MeCP2 molecules at the TSS
In females with X-linked genetic disorders, wild-type and mutant cells coexist within brain tissue because of X-chromosome inactivation, posing challenges for interpreting the effects of X-linked mutant alleles on gene expression. We present a single-nucleus RNA sequencing approach that resolves mosaicism by using SNPs in genes expressed in
cis
with the X-linked mutation to determine which nuclei express the mutant allele even when the mutant gene is not detected. This approach enables gene expression comparisons between mutant and wild-type cells within the same individual, eliminating variability introduced by comparisons to controls with different genetic backgrounds. We apply this approach to mosaic female mouse models and humans with Rett syndrome, an X-linked neurodevelopmental disorder caused by mutations in the methyl-DNA-binding protein MECP2 and observe that cell-type-specific DNA methylation predicts the degree of gene up-regulation in
MECP2
-mutant neurons. This approach can be broadly applied to study gene expression in mosaic X-linked disorders.
Rad50/Mre11/NBS1 (R/M/N) is a multi-functional protein complex involved in DNA repair, cell cycle checkpoint activation, DNA replication and replication block-induced responses. Ionizing radiation (IR) induces the phosphorylation of NBS1 and nuclear foci formation of the complex. Although it has been suggested that the R/M/N complex is associated with DNA damage sites, we present here biochemical evidence for chromatin association of the complex. We show that the chromatin association of R/M/N is independent of IR and ataxia telangiectasia mutated (ATM). We also demonstrate that optimal chromatin association of the Rad50/Mre11/NBS1 proteins requires both the conserved forkhead-associated (FHA) and breast cancer C-terminus (BRCT) domains of NBS1. Moreover, both these domains of NBS1 are required for its phosphorylation on Ser343 but not on Ser278. Importantly, both the FHA and BRCT domains are essential for IR-induced foci (IRIF) formation of R/M/N and S phase checkpoint activation, but only the BRCT domain is needed for cell survival after IR. These data demonstrate that the FHA and BRCT domains of NBS1 are crucial for the functions of the R/M/N complex.
Alterations in gene expression are implicated in the pathogenesis of several neuropsychiatric disorders, including drug addiction and depression. Increasing evidence indicates that changes in gene expression in neurons, in the context of animal models of addiction and depression, are mediated in part by epigenetic mechanisms that alter chromatin structure on specific gene promoters. This review discusses recent findings from behavioral, molecular, and bioinformatic approaches that are being used to understand the complex epigenetic regulation of gene expression in brain by drugs of abuse and by stress. These advances promise to open up new avenues for improved treatments of these disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.