Herein, we report the synthesis of YBa 2 Cu 3 O x superconducting nanorods performed by solution chemistry. Initially, a mixture of fine-grained coprecipitated powder was obtained and subsequently converted to YBa 2 Cu 3 O x nanorods by heating to 1223 K in oxygen for 12 h. The nanorods are superconducting without the need for any further sintering or oxygenation, thereby providing an avenue for direct application to substrates at room temperature or direct use as formed nanorods. A critical superconducting transition temperature T c of about 92 K was achieved at a critical magnetic field of 10 Oe.
A method is described for creating a measurable unbalanced gravitational acceleration using a gravitomagnetic field surrounding a superconducting toroid. A gravitomagnetic toroid for unbalanced force production has been experimentally realized as quite impractical. However recent advances in nanorod superconducting wire technology has enabled a new class of SMES devices operating at current densities and magnetic field strengths sufficient to develop measurable gravitomagnetic fields, while still maintaining mechanical integrity. It is proposed that an experimental SMES toroid configuration uses an absolute quantum gravimeter to measure acceleration fields along the axis of symmetry of a toroidal coil, thus providing experimental confirmation of the additive nature of the gravitomagnetic fields, as well as the production of a linear component of the overall acceleration field. In the present paper relativistic enhancement of this effect is also explored, as well as alternating current (AC) operations of the superconducting toroid to create gravitational waves. Lorentz force concerns are also addressed in Appendix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.