problem, Cauchy problem, backward fractional diffusion and sideways problem for space fractional diffusion. It is found that contrary to the wide belief, the influence of anomalous diffusion on the degree of ill-posedness is not definitive: it can either significantly improve or worsen the conditioning of related inverse problems, depending crucially on the specific type of given data and quantity of interest. Further, the study exhibits distinct new features of 'fractional' inverse problems, and a partial list of surprising observations is given below. (a) Classical backward diffusion is exponentially ill-posed, whereas time fractional backward diffusion is only mildly ill-posed in the sense of norms on the domain and range spaces. However, this does not imply that the latter always allows a more effective reconstruction. (b) Theoretically, the time fractional sideways problem is severely ill-posed like its classical counterpart, but numerically can be nearly well-posed. (c) The classical Sturm-Liouville problem requires two pieces of spectral data to uniquely determine a general potential, but in the fractional case, one single Dirichlet spectrum may suffice. (d) The space fractional sideways problem can be far more or far less ill-posed than the classical counterpart, depending on the location of the lateral Cauchy data.In many cases, the precise mechanism of these surprising observations is unclear, and awaits further analytical and numerical exploration, which requires new mathematical tools and ingenuities. Further, our findings indicate fractional diffusion inverse problems also provide an excellent case study in the differences between theoretical ill-conditioning involving domain and range norms and the numerical analysis of a finite-dimensional reconstruction procedure. Throughout we will also describe known analytical and numerical results in the literature.
Determining the shape of a perfectly conducting inclusion within a conducting medium from voltage and current measurements on the accessible boundary of the medium can be modelled as an inverse boundary value problem for harmonic functions. We present a novel solution method for such inverse boundary value problems via a pair of nonlinear and ill-posed integral equations for the unknown boundary that can be solved by linearization, i.e., by regularized Newton iterations. We present a mathematical foundation of the method and illustrate its feasibility by numerical examples.
This paper considers an inverse potential problem which seeks to recover the shape of an obstacle separating two different densities by measurements of the potential. A representation for the domain derivative of the corresponding operator is established and this allows the investigation of several iterative methods for the solution of this ill-posed problem.
Abstract. In this work, we consider boundary value problems involving Caputo and Riemann-Liouville fractional derivatives of order α ∈ (1, 2) on the unit interval (0, 1). These fractional derivatives lead to non-symmetric boundary value problems, which are investigated from a variational point of view. The variational problem for the Riemann-Liouville case is coercive on the space H α/2 0 (0, 1) but the solutions are less regular, whereas that for the Caputo case involves different test and trial spaces. The numerical analysis of these problems requires the so-called shift theorems which show that the solutions of the variational problem are more regular. The regularity pickup enables one to establish convergence rates of the finite element approximations. Finally, numerical results are presented to illustrate the error estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.