Patch-clamp recording has enabled single-cell electrical, morphological and genetic studies at unparalleled resolution. Yet it remains a laborious and low-throughput technique, making it largely impractical for large-scale measurements such as cell type and connectivity characterization of neurons in the brain. Specifically, the technique is critically limited by the ubiquitous practice of manually replacing patch-clamp pipettes after each recording. To circumvent this limitation, we developed a simple, fast, and automated method for cleaning glass pipette electrodes that enables their reuse within one minute. By immersing pipette tips into Alconox, a commercially-available detergent, followed by rinsing, we were able to reuse pipettes 10 times with no degradation in signal fidelity, in experimental preparations ranging from human embryonic kidney cells to neurons in culture, slices, and in vivo. Undetectable trace amounts of Alconox remaining in the pipette after cleaning did not affect ion channel pharmacology. We demonstrate the utility of pipette cleaning by developing the first robot to perform sequential patch-clamp recordings in cell culture and in vivo without a human operator.
Objective.-Intracellular patch-clamp electrophysiology, one of the most ubiquitous, highfidelity techniques in biophysics, remains laborious and low-throughput. While previous efforts have succeeded at automating some steps of the technique, here we demonstrate a robotic 'PatcherBot' system that can perform many patch-clamp recordings sequentially, fully unattended.Approach.-Comprehensive automation is accomplished by outfitting the robot with machine vision, and cleaning pipettes instead of manually exchanging them.Main results.-the PatcherBot can obtain data at a rate of 16 cells per hour and work with no human intervention for up to 3 h. We demonstrate the broad applicability and scalability of this
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.