Purpose: Surgery is an essential part of the curative plan for most patients affected with solid tumors. The outcome of such surgery, e.g., recurrence rates and ultimately patient survival, depends on several factors where the resection margin is of key importance. Presently, the resection margin is assessed by classical histology, which is time-consuming (several days), destructive, and basically only gives two-dimensional information. Clearly, it would be advantageous if immediate feedback on tumor extension in all three dimensions were available to the surgeon intraoperatively.Approach: We investigate a laboratory propagation-based phase-contrast x-ray computed tomography system that provides the resolution, the contrast, and, potentially, the speed for this purpose. The system relies on a liquid-metal jet microfocus source and a scintillator-coated CMOS detector. Our study is performed on paraffin-embedded non-stained samples of human pancreatic neuroendocrine tumors, liver intrahepatic cholangiocarcinoma, and pancreatic serous cystic neoplasm (benign).Results: We observe tumors with distinct and sharp edges having cellular resolution (∼10 μm) as well as many assisting histological landmarks, allowing for resection margin assessment. All x-ray data are compared with classical histology. The agreement is excellent. Conclusion:We conclude that the method has potential for intraoperative three-dimensional virtual histology.
Purpose: Synchrotron radiation-based tomography yields microanatomical features in human and animal tissues without physical slicing. Recent advances in instrumentation have made laboratory-based phase tomography feasible. We compared the performance of three cutting-edge laboratory systems benchmarked by synchrotron radiation-based tomography for three specimens. As an additional criterion, the user-friendliness of the three microtomography systems was considered.Approach: The three tomography systems-SkyScan 2214 (Bruker-microCT, Kontich, Belgium), Exciscope prototype (Stockholm, Sweden), and Xradia 620 Versa (Zeiss, Oberkochen, Germany)were given 36 h to measure three medically relevant specimens, namely, zebrafish larva, archaeological human tooth, and porcine nerve. The obtained datasets were registered to the benchmark synchrotron radiation-based tomography from the same specimens and selected ones to the SkyScan 1275 and phoenix nanotom m ® laboratory systems to characterize development over the last decade.Results: Next-generation laboratory-based microtomography almost reached the quality achieved by synchrotron-radiation facilities with respect to spatial and density resolution, as indicated by the visualization of the medically relevant microanatomical features. The SkyScan 2214 system and the Exciscope prototype demonstrated the complementarity of phase information by imaging the eyes of the zebrafish larva. The 3-μm thin annual layers in the tooth cementum were identified using Xradia 620 Versa.
Synchrotron radiation-based tomography yields the micro-anatomical features in human and animal tissues without physical slicing. Recent advances in instrumentation have made laboratory-based phase tomography feasible. We compared the performance of three cutting-edge laboratory systems benchmarked by synchrotron radiation-based tomography for three specimens. As an additional criterion, the user-friendliness of the three microtomography systems is considered. The three tomography systems-SkyScan 2214 (Bruker-microCT, Kontich, Belgium), Xradia 620 Versa (Zeiss, Oberkochen, Germany) and the prototype of Exciscope (Stockholm, Sweden)-were given 36 hours to measure three medically relevant specimens-archaeological human tooth, porcine nerve and zebrafish embryo. The obtained datasets were registered to the benchmark synchrotron radiation-based tomography from the same specimens and to the SkyScan 1275 and phoenix nanotom m ® laboratory systems to characterize the development during the last decade. The next-generation laboratory-based microtomography almost reached the quality of synchrotron-radiation facilities with respect to spatial and density resolution, as indicated by the visualization of the medically relevant micro-anatomical features. The Exciscope prototype and the SkyScan 2214 demonstrated the complementarity of phase information by imaging the eyes of the zebrafish embryo. The Xradia 620 Versa enabled the three-dimensional visualization of the 2 to 3 µm-thin annual layers in tooth cementum. The data of the Exciscope prototype with the high photon flux from the liquid metal source from Excillum (Kista, Sweden) showed the spiral nature of the myelin sheaths in the porcine nerve. The SkyScan 2214, the most effortable among the three next-generation systems evaluated, was well suited to visualize the wealth of anatomical features in the zebrafish embryo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.