Effects of genistein on wild-type (wt) and delta F508-cystic fibrosis transmembrane conductance regulator (CFTR) were studied in NIH/3T3 cells stably transfected with wt or mutant CFTR cDNA. As measured by I- efflux, half-maximal concentration of agonist (K1/2) for forskolin-dependent activation was greater for delta F508-CFTR than wt-CFTR. Genistein decreased the K1/2 for both forms of the channel and increased the maximal activity of delta F508-CFTR by 3.7-fold. In cell-attached patches, 10 microM forskolin induced minimal delta F508-CFTR activity with characteristic prolonged closed times (estimated time constant, > 30 s). Genistein increased the forskolin-induced macroscopic currents of wt-CFTR and delta F508-CFTR by 3- and 19-fold, respectively. Variance analysis suggested that in the presence of forskolin and genistein the open probabilities (Po) of wt- and delta F508-CFTR were identical. In single-channel studies, at maximal adenosine 3',5'-cyclic monophosphate (cAMP) stimulation, genistein increased the Po of wt-CFTR by prolonging the open time, but, at submaximal cAMP stimulation, the Po was increased by prolonging the open time and shortening the closed time. In excised patches with CFTR channels preactivated in the cell-attached mode, genistein increased ATP-dependent wt- and delta F508-CFTR current about twofold by prolonging the open time. Our results thus suggest that phosphorylation-dependent activation of delta F508-CFTR is defective and that genistein corrects this defect at least in part by binding to the CFTR protein.
Genistein, a protein tyrosine kinase inhibitor, activates the cystic fibrosis transmembrane conductance regulator (CFTR) in transfected NIH-3T3 fibroblasts that express the CFTR (3T3-CFTR). CFTR activity was assayed by 125I efflux and by patch clamping in the cell-attached mode. Both forskolin and genistein stimulated 125I efflux and activated a 9-10 pS anion channel in 3T3-CFTR cells but failed to activate 125I efflux in mock-transfected NIH-3T3 cells. Genistein, unlike forskolin and 3-isobutyl-1-methylxanthine, did not increase intracellular adenosine 3',5'-cyclic monophosphate (cAMP) above control levels. This demonstrates that genistein-dependent activation does not involve inhibition of phosphodiesterase activity and suggests that stimulation does not involve a direct activation of protein kinase A. Genistein stimulated 125I efflux to approximately 50% of the maximal rate with forskolin. Genistein did not increase 125I efflux at saturating forskolin but decreased the concentration of forskolin required for half-maximal stimulation. Orthovanadate (VO4), a phosphotyrosine phosphatase inhibitor, inhibited genistein-induced channel activation with an inhibition constant of approximately 20 microM. These effects suggest that, in addition to activation by protein kinase A, the CFTR is regulated by a tyrosine kinase-dependent pathway.
Inverted membrane vesicles prepared from Escherichia coli ML 308-225 generate a transmembrane electrochemical proton gradient (delta mu H+; interior positive and acid) during oxidation of D-lactate, succinate, reduced phenazine methosulfate, or NADH or hydrolysis of ATP. Using the distribution of the lipophilic anion thiocyanate to measure the membrane potential (delta psi) and the permeant weak base methylamine to measure the pH gradient (delta pH), maximal values for delta psi H+ of approximately +160 mV are obtained. Many of the properties of delta psi H+ in inverted vesicles are similar to those described previously in right-side-out vesicles [Ramos, S., & Kaback, H.R. (1977) Biochemistry 16, 848]: (1) the magnitude of the delta psi (interior positive) generated in the presence of D-lactate or reduced phenazine methosulfate is similar to that observed in right-side-out vesicles but of opposite polarity and independent of pH from 5.5 to 8.0; (2) plots of delta pH vs. internal pH in the right-side-out vesicles are similar with D-lactate as the electron donor; (3) as observed with right-side-out vesicles, dissipation of delta psi or delta pH leads to a concomitant increase in the other parameter without a change in the rate of respiration; (4) inverted vesicles catalyze Na+ accumulation, and it is apparent that the process can be driven by either delta psi (interior positive) or delta pH (interior acid).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.