Primary biliary cirrhosis (PBC) recurs in the allograft after liver transplantation. Study of early tissue changes in the time-course of disease recurrence provides a unique insight into the initial stages of the disease process, which, in nontransplant patients, occurs long before clinical presentation. We describe a patient who developed classical clinical, biochemical, immunological, and histological features of PBC within 9 months after transplantation. Use of tissue from this patient before and during the development of PBC allowed us to identify biliary epithelial cell (BEC) epithelial-mesenchymal transition (EMT) as a key pathogenetic process. BEC expression of S100A4 (an early fibroblast lineage marker established as a robust marker of EMT), vimentin, and pSmad 2/3 [a marker of transforming growth factor beta (TGF-) pathway signaling] were identified immunohistochemically in most BECs in liver tissue from this patient at the point of diagnosis of recurrent disease. BEC expression of S100A4 and pSmad 2/3 was seen as early as 24 days after orthotopic liver transplantation (OLT), although no other features of recurrent PBC were present at this time. Conclusion: S100A4, vimentin, and pSmad 2/3 expression in early recurrent PBC after OLT suggests that BEC EMT is occurring (potentially explaining BEC loss) and that this process is driven by TGF-. S100A4 expression by BEC appears to occur before the development of any other features of recurrent PBC, suggesting that EMT may be an initiating event. (HEPATOLOGY 2007;45:977-981.)
The microbiome plays a fundamental role in how the immune system develops and how inflammatory responses are shaped and regulated. The “gut-lung axis” is a relatively new term that highlights a crucial biological crosstalk between the intestinal microbiome and lung. A growing body of literature suggests that dysbiosis, perturbation of the gut microbiome, is a driving force behind the development, and severity of allergic asthma. Animal models have given researchers new insights into how gut microbe-derived components and metabolites, such as short-chain fatty acids (SCFAs), influence the development of asthma. While the full understanding of how SCFAs influence allergic airway disease remains obscure, a recurring theme of epigenetic regulation of gene expression in several immune cell compartments is emerging. This review will address our current understanding of how SCFAs, and specifically butyrate, orchestrates cell behavior, and epigenetic changes and will provide a detailed overview of the effects of these modifications on immune cells in the context of allergic airway disease.
Neurofilaments: light, medium, and heavy (abbreviated as NF-L, NF-M, and NF-H, respectively), which belong to Type IV intermediate filament family (IF), are neuron-specific cytoskeletal components. Neurofilaments are axonal structural components and integral components of synapses, which are important for neuronal electric signal transmissions along the axons and post-translational modification. Abnormal assembly of neurofilaments is found in several human neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), infantile spinal muscular atrophy (SMA), and hereditary sensory-motor neuropathy (HSMN). In addition, those pathological neurofilament accumulations are known in α-synuclein in Parkinson’s disease (PD), Aβ and tau in Alzheimer’s disease (AD), polyglutamine in CAG trinucleotide repeat disorders, superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP43), neuronal FUS proteins, optineurin (OPTN), ubiquilin 2 (UBQLN2), and dipeptide repeat protein (DRP) in amyotrophic lateral sclerosis (ALS). When axon damage occurs in central nervous disorders, neurofilament proteins are released and delivered into cerebrospinal fluid (CSF), which are then circulated into blood. New quantitative analyses and assay techniques are well-developed for the detection of neurofilament proteins, particularly NF-L and the phosphorylated NF-H (pNF-H) in CSF and serum. This review discusses the potential of using peripheral blood NF quantities and evaluating the severity of damage in the nervous system. Intermediate filaments could be promising biomarkers for evaluating disease progression in different nervous system disorders.
Autologous ossicles that have retained body and bulk are safe to use for reconstruction after surface stripping under the operating microscope. Additional burring probably adds a further margin of safety.
Background: Patients with chronic obstructive pulmonary disease (COPD) are commonly treated with inhaled corticosteroid/long-acting ß2-agonist combination therapy. While previous studies have investigated the host–microbiome interactions in COPD, the effects of specific steroid formulations on this complex cross-talk remain obscure. Methods: We collected and evaluated data from the Study to Investigate the Differential Effects of Inhaled Symbicort and Advair on Lung Microbiota (DISARM), a randomized controlled trial. Bronchoscopy was performed on COPD patients before and after treatment with salmeterol/fluticasone, formoterol/budesonide or formoterol-only. Bronchial brush samples were processed for microbial 16S rRNA gene sequencing and host mRNA sequencing. Longitudinal changes in the microbiome at a community, phylum and genus level were correlated with changes in host gene expression using a Spearman’s rank correlation test. Findings: In COPD patients treated with salmeterol/fluticasone, the expression levels of 676 host genes were significantly correlated to changes in the alpha diversity of the small airways. At a genus level, the expression levels of 122 host genes were significantly related to changes in the relative abundance of Haemophilus. Gene enrichment analyses revealed the enrichment of pathways and biological processes related to innate and adaptive immunity and inflammation. None of these changes were evident in patients treated with formoterol/budesonide or formoterol alone. Interpretation: Changes in the microbiome following salmeterol/fluticasone treatment are related to alterations in the host transcriptome in the small airways of patients with COPD. These data may provide insights into why some COPD patients treated with inhaled corticosteroids may be at an increased risk for airway infection, including pneumonia. Funding: The Canadian Institute of Health Research, the British Columbia Lung Association, and an investigator-initiated grant from AstraZeneca.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.