Microsatellite clustering may account for genetic maps which do not coalesce into the expected number of linkage groups. Microsatellite organization within the large genome of Pinus taeda (1C = 20,000 Mb) was determined by (1) testing whether repeat motifs were sequestered within the low-copy DNA kinetic component and (2) testing for repeat motif clusters within DNA fragments regardless of copy number. Within the low-copy kinetic component, either (AC)n or (AG)n repeat units were present in 32% of sequences. No repeat motifs were found in the total genome control. Clustered repeat motifs were frequent; the (ATG)n triplet repeat motif was located upstream from a CG-rich trinucleotide microsatellite in 26 out of 44 microsatellite sequences. Fourteen of the clustered (ATG)n sequences could be assembled into four microsatellite sequence families based on similarities in the flanking regions. Consistent with the DNA turnover model, family members shared similar flanking regions but differed in repeat motif composition and length.
The ongoing SARS-CoV-2 pandemic has resulted in an increased need for technologies capable of efficiently disinfecting public spaces as well as personal protective equipment. UV light disinfection is a well-established method for inactivating respiratory viruses. Here, we have determined that broad-spectrum, pulsed UV light is effective at inactivating SARS-CoV-2 on multiple surfaces. For hard, non-porous surfaces we observed that SARS-CoV-2 was inactivated to undetectable levels on plastic and glass with a UV dose of 34.9 mJ/cm2 and stainless steel with a dose of 52.5 mJ/cm2. We also observed that broad-spectrum, pulsed UV light is effective at reducing SARS-CoV-2 on N95 respirator material to undetectable levels with a dose of 103 mJ/cm2. We included UV dosimeter cards that provide a colorimetric readout of UV dose and demonstrated their utility as a means to confirm desired levels of exposure were reached. Together, the results present here demonstrate that broad-spectrum, pulsed UV light is an effective technology for the inactivation of SARS-CoV-2 on multiple surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.