To date, reperfusion with tissue plasminogen activator (tPA) remains the gold standard treatment for ischemic stroke. However, when tPA is given beyond 4.5 hours of stroke onset, deleterious effects of the drug ensue, especially, hemorrhagic transformation (HT), which causes the most significant morbidity and mortality in stroke patients. An important clinical problem at hand is to develop strategies that will enhance the therapeutic time window for tPA therapy and reduce the adverse effects (especially HT) of delayed tPA treatment. We reviewed the pharmacological agents which reduced the risk of HT associated with delayed (beyond 4.5 hours post-stroke) tPA treatment in preclinical studies, which we classified into those that putatively preserve the blood-brain barrier (e.g., minocycline, cilostazol, fasudil, candesartan, and bryostatin) and/or enhance vascularization and protect the cerebrovasculature (e.g., coumarin derivate IMM-H004 and granulocyte colony-stimulating factor). Recently, other new therapeutic modalities (e.g., oxygen transporters) have been reported which improved delayed tPA-associated outcomes by acting through other mechanisms. While the above-mentioned interventions unequivocally reduced delayed tPA-induced HT in stroke models, the long-term efficacy of these drugs are not yet established. Further optimization is required to expedite their future clinical application. The findings from this review indicate the need to explore the most ideal adjunctive interventions that will not only reduce delayed tPA–induced HT, but also preserve neurovascular functions. While waiting for the next breakthrough drug in acute stroke treatment, it is equally important to allocate considerable effort to find approaches to address the limitations of the only FDA-approved stroke therapy.
Breast tumors often show profound sensitivity to exogenous oxidative stress. Investigational agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) induces aryl hydrocarbon receptor (AhR)-mediated DNA damage in certain breast cancer cells. Since AhR agonists often elevate intracellular oxidative stress, we hypothesize that 5F 203 increases reactive oxygen species (ROS) to induce DNA damage, which thwarts breast cancer cell growth. We found that 5F 203 induced single-strand break formation. 5F 203 enhanced oxidative DNA damage that was specific to breast cancer cells sensitive to its cytotoxic actions, as it did not increase oxidative DNA damage or ROS formation in nontumorigenic MCF-10A breast epithelial cells. In contrast, AhR agonist and procarcinogen benzo[a]pyrene and its metabolite, 1,6-benzo[a]pyrene quinone, induced oxidative DNA damage and ROS formation, respectively, in MCF-10A cells. In sensitive breast cancer cells, 5F 203 activated ROS-responsive kinases: c-Jun-N-terminal kinase (JNK) and p38 mitogen activated protein kinase (p38). AhR antagonists (alpha-naphthoflavone, CH223191) or antioxidants (N-acetyl-l-cysteine, EUK-134) attenuated 5F 203-mediated JNK and p38 activation, depending on the cell type. Pharmacological inhibition of AhR, JNK, or p38 attenuated 5F 203-mediated increases in intracellular ROS, apoptosis, and single-strand break formation. 5F 203 induced the expression of cytoglobin, an oxidative stress-responsive gene and a putative tumor suppressor, which was diminished with AhR, JNK, or p38 inhibition. Additionally, 5F 203-mediated increases in ROS production and cytoglobin were suppressed in AHR100 cells (AhR ligand-unresponsive MCF-7 breast cancer cells). Our data demonstrate 5F 203 induces ROS-mediated DNA damage at least in part via AhR, JNK, or p38 activation and modulates the expression of oxidative stress-responsive genes such as cytoglobin to confer its anticancer action.
Tissue plasminogen activator (tPA) thrombolysis remains the gold standard treatment for ischemic stroke. A time-constrained therapeutic window, with the drug to be given within 4.5 h after stroke onset, and lethal side effects associated with delayed treatment, most notably hemorrhagic transformation (HT), limit the clinical use of tPA. Co-administering tPA with other agents, including drug or non-drug interventions, has been proposed as a practical strategy to address the limitations of tPA. Here, we discuss the pharmacological and non-drug approaches that were examined to mitigate the complications—especially HT—associated with delayed tPA treatment. The pharmacological treatments include those that preserve the blood-brain barrier (e.g., atovarstatin, batimastat, candesartan, cilostazol, fasudil, minocycline, etc.), enhance vascularization and protect the cerebrovasculature (e.g., coumarin derivate IMM-H004 and granulocyte-colony stimulating factor (G-CSF)), and exert their effects through other modes of action (e.g., oxygen transporters, ascorbic acid, etc.). The non-drug approaches include stem cell treatments and gas therapy with multi-pronged biological effects. Co-administering tPA with the abovementioned therapies showed promise in attenuating delayed tPA-induced side effects and stroke-induced neurological and behavioral deficits. Thus, adjunctive treatment approach is an innovative therapeutic modality that can address the limitations of tPA treatment and potentially expand the time window for ischemic stroke therapy.
The estrogen receptor (ER) is a primary target for breast cancer (BC) treatment. As BC progresses to estrogen-independent growth, the IGF-1R and the ER interact in synergistic crosstalk mechanisms which results in enhanced activation of both receptors signaling cascades. Insulin-like growth factor 2 (IGF-2) is critical in BC progression and its actions are mediated by the IGF-1R. Our previous studies showed that IGF-2 regulates survival genes that protect the mitochondria and promote chemoresistance. In this study, we analyzed BC cells by subcellular fractionation, Western-Blot, qRT-PCR and siRNA analysis. Our results demonstrate that IGF-2 activates ER-α and ER-β and modulates their translocation to the nucleus, membrane organelles and the mitochondria. IGF-2 actions are mediated by the IGF-1R and the insulin receptor (IR). This novel mechanism of IGF-2 synergistic crosstalk signaling with ER-α and ER-β can promote estrogenindependent BC progression and provides new therapeutic targets for the treatment of breast cancer patients.
Both phentermine combined with a meal replacement program and meal replacements alone significantly reduced body weight and food cravings; however, the addition of phentermine enhanced these effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.