After pulp extraction in fruit processing industry, a significant quantity of mango seed kernels are discarded as solid wastes. These seed kernels can be ideal raw materials for obtaining extracts rich in bioactive compounds with good antioxidant properties. The conversion of these wastes into utilizable food ingredients would help in reducing environmental problems associated with processing waste disposal. In order to determine their potential use, this study evaluated some of the biochemical characteristics and antimicrobial potential of mango seed kernel extracts on medically important human bacterial and fungal pathogens. Four mango varieties (Apple, Ngowe, Kent and Sabine) from Makueni and Embu counties in Kenya were used for this study. The analyzed mango seed kernel powders were found to contain on average, 6.74–9.20% protein content. Apple and Ngowe mango seed kernels had significantly higher fat content of 13.04 and 13.08, respectively, while Sabine from Makueni had the least fat content of 9.84%. The ash, fiber, and carbohydrate contents ranged from 1.78 to 2.87%, 2.64 to 3.71% and 72.86 to 75.92%, respectively. The mean percentage scavenging ability of mango kernel extracts at the concentration of 20 mg/mL was 92.22%. Apple and Sabine mango kernel extracts had significantly high inhibition zones of 1.93 and 1.73 compared to Kent and Ngowe with 1.13 and 1.10, respectively, against E. coli. For C. albicans, the inhibition of Kent mango kernel extract, 1.63, was significantly lower than that of Ngowe, Apple, and Sabine with 2.23, 2.13, and 1.83, respectively. This study demonstrates that mango seed powder is an abundant and cost‐effective potential natural antibiotic and antifungal that can be utilized in addressing the challenge of food poisoning and infections caused by pathogenic microorganisms in the food industry.
African eggplants (Solanum aethiopicum and S. macrocarpon) are among the most economically important and valuable vegetable and fruit crops. They are a major source of biologically active nutritional substances and metabolites which are essential for plant growth, development, stress adaptation and defense. Among these metabolites are the carotenoids which act as accessory pigments for photosynthesis and precursor to plant hormones. Though African eggplants are known to be resistant to various abiotic stresses, the effect of these stresses on secondary metabolites has not been well defined. The objective of this study was to establish the effect of drought stress on carotenoid profiles of nineteen African eggplant accessions selected based on leaf and fruit morphological traits. Stress was achieved by limiting irrigation and maintaining the wilting state of the crops. Fresh leaves were sampled at different maturity stages; before stress, 2 weeks and 4 weeks after stress for carotenoid analysis. The fresh harvested leaf tissues were immediately frozen in liquid nitrogen and ground. Analysis was carried out using a Dionex HPLC machine coupled to Photo Array Detector and Chromeleon software package (Thermo Fisher Scientific Inc, Waltham, Massachusetts, USA). Major carotenoids viz;. Xanthophylls (neoxanthin, violaxanthin, zeaxanthin and lutein) and carotenes (β–carotene and α–carotene), phytofluene, lycopene, phytoene as well as chlorophylls (chlorophyll‐b and Chlorophyll‐a) were targeted. The carotenoids increased with maturity stage of the crop. Although the stressed crops reported significantly decreased amount of carotenes, chlorophylls, neoxanthin and violaxanthin, the concentration of zeaxanthin increased with stress whereas lutein had no significant change. Chlorophyll‐a was significantly high in all the control accessions. Two accessions reported significantly higher contents of carotenoids as compared to the other accessions. The results of this study indicate that water stress has significant impact on the concentration of some carotenoids and photosynthetic pigments. This will definitely add value to the study of stress tolerance in crops.
Ethylene perception has been studied using Arabidopsis and tomato as model plants during last two decades. Arabidopsis has been an ideal model system for gene identification and subsequent functional analysis of the identified gene. On the other hand, tomato is not only the model of choice to study climacteric fruit ripening but also crops of agronomic importance and hence has been at the forefront of the comparative analysis with Arabidopsis. A number of fruit development and ripening studies in melon has been conducted by many laboratories in the last decade, leading to the accumulation of a great deal of information. These include genetic transformation techniques, isolation of related genes, physiological information and genetics resources. The information accumulated has enabled melon to carve a niche for itself as an alternative model system for fruit for studies. In addition, International Cucurbit Genomics Initiative (ICuGI) was launched 2005, in which melon became a model species in Cucurbit genomics research. In next decade, genomic resources including large collection of ESTs, precise maps and so on will be gathered, indicating that melon will be an alternative model plant for studying fruit ripening in addition to ethylene perception and signaling. In this review, we will summarize the information accumulated so far and discuss the perspectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.