Purpose: Germ cell tumors (GCT) of the testis are highly curable, but those patients who are refractory to cisplatin (CDDP)-based combination chemotherapy have a poor prognosis. Therefore, identifying new alternatives for treatment remains a priority. Several studies support an important role for angiogenesis in GCTs, suggesting that antiangiogenic treatment might be a good alternative. Sunitinib is an oral multitarget tyrosine kinase receptor inhibitor with antiangiogenic and antitumor activities. In the present study, we evaluated the effect of sunitinib, CDDP, or the combination of both drugs using an orthotopic model of human testicular GCT. Experimental Design: Mice were implanted with four different testicular tumors: a yolk sac, two choriocarcinomas, and a CDDP-resistant choriocarcinoma variant induced in mice by continuous exposure to CDDP. Mice were treated with vehicle, CDDP, sunitinib, or the combination of both drugs and their effects on tumors were analyzed. Results: We observed a significant inhibition in tumor growth accompanied by longer survival after sunitinib treatment. Combination therapy with CDDP significantly enhanced these effects. Sunitinib induced apoptosis, reduced tumor cell proliferation and tumor vasculature, and inhibited vascular endothelial growth factor receptor 1, 2, and 3 and platelet-derived growth factor receptor α phosphorylation without affecting phosphorylation of other tyrosine kinase receptors. More importantly, tumor growth inhibition induced by sunitinib was also observed in the induced CDDP-resistant choriocarcinoma model. Conclusions: Taken together, these results suggest that sunitinib might be a new alternative for treatment of CDDP-refractory patients.
Prodigiosin is a red pigment produced by Serratia marcescens with apoptotic activity. We examined the mechanism of action of this tripyrrole alkaloid, focusing on its interaction with DNA and its ability to inhibit both topoisomerase I and topoisomerase II. We also evaluated the DNA damage induced in cancer cell lines. Prodigiosin-DNA intercalation was analyzed using a competition dialysis assay with different DNA base sequences. Topoisomerase I and II inhibition was studied in vitro by a cleavage assay, and in cultured cells, by analysis of its ability to form covalent complexes. Furthermore, we analyzed DNA damage by pulse-field gel electrophoresis and by immunocytochemistry. Apoptosis inducing factor (AIF)/phospho-H2AX (p-H2AX) double labeling by confocal microscopy was performed to determine the possible implication of AIF in the prodigiosin-DNA damage. Finally, we studied the ability of this drug to induce copper-mediated DNA damage at different pH by a DNA cleavage assay. Our results demonstrate prodigiosin-DNA interaction in vitro and in cultured cells. It involves prodigiosin-DNA intercalation, with some preference for the alternating base pairs but with no discrimination between AT or CG sequences, dual abolition of topoisomerase I and II activity and, as consequence, DNA cleavage. Prodigiosin-DNA damage is independent of AIF. Furthermore, we found that copper-mediated cleavage activity is associated with pH (occurring at pH 6.8 rather than pH 7.4) and with the Cu(2+) ion concentration. These results indicate DNA a therapeutic target for prodigiosin and could explain the apoptosis mechanism of action induced by this antineoplastic drug.
To investigate the genetic basis of cisplatin resistance as efficacy of cisplatin-based chemotherapy in the treatment of distinct malignancies is often hampered by intrinsic or acquired drug resistance of tumor cells. We produced 14 orthoxenograft transplanting human nonseminomatous testicular germ cell tumors (TGCT) in mice, keeping the primary tumor features in terms of genotype, phenotype, and sensitivity to cisplatin. Chromosomal and genetic alterations were evaluated in matched cisplatin-sensitive and their counterpart orthoxenografts that developed resistance to cisplatin in nude mice. Comparative genomic hybridization analyses of four matched orthoxenografts identified recurrent chromosomal rearrangements across cisplatin-resistant tumors in three of them, showing gains at 9q32-q33.1 region. We found a clinical correlation between the presence of 9q32-q33.1 gains in cisplatin-refractory patients and poorer overall survival (OS) in metastatic germ cell tumors. We studied the expression profile of the 60 genes located at that genomic region. and were the only two genes deregulated in resistant tumors harboring the 9q32-q33.1 gain. Moreover, other four genes ( and ) were deregulated in all five resistant tumors independently of the 9q32-q33.1 amplification. RT-PCRs in tumors and functional analyses in () indicate that the influence of 9q32-q33.1 genes in cisplatin resistance can be driven by either up- or downregulation. We focused on glucosylceramide synthase (GCS) to demonstrate that the GCS inhibitor DL-threo-PDMP resensitizes cisplatin-resistant germline-derived orthoxenografts to cisplatin. Orthoxenografts can be used preclinically not only to test the efficiency of drugs but also to identify prognosis markers and gene alterations acting as drivers of the acquired cisplatin resistance. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.