The objective of this study is to characterize Latent Classes emerging from the analysis of the level of digital competences, use and consumption of applications and/or services through the Internet. For this purpose, the results of the survey Basic Digital Competences (Competencias Básicas Digitales-COBADI®) applied to university students, with more than 60 categorical variables, were considered. A total of 4762 undergraduate and graduate students from five Spanish universities participated in this survey: Complutense University of Madrid (UCM), Pablo de Olavide University (UPO), Almeria University (UAL), National University of Distance Education (UNED) and Rey Juan Carlos University (URJC). The application of the questionnaire was done through the Internet, from the Institute for Research in Social Sciences and Education of University of Atacama—Chile. The methodology used is mixed, because the questions of the questionnaire provide qualitative information that can be interpreted and elaborated from the results. It is also quantitative because basic statistical techniques are used for the exploratory analysis of the data, and later Latent Class Analysis (LCA), to complement the description of the data set and the variables considered in the study, thus allowing us to group the classes of variables that do not appear explicitly in the set of observed variables, but which nevertheless affect them. The results of the study show that regardless of the gender and age range of the participants, there are four clearly differentiated groups or classes in the use and consumption of ICTs in different ways for their activities, both personal and academic, which allows for identifying different developments of digital competences. This study allows establishing a baseline in order to be able to elaborate later, in the development of the digital competences currently needed, which should be developed by university students.
In recent years, photovoltaic energy has become one of the most implemented electricity generation options to help reduce environmental pollution suffered by the planet. Accuracy in this photovoltaic energy forecasting is essential to increase the amount of renewable energy that can be introduced to existing electrical grid systems. The objective of this work is based on developing various computational models capable of making short-term forecasting about the generation of photovoltaic energy that is generated in a solar plant. For the implementation of these models, a hybrid architecture based on recurrent neural networks (RNN) with long short-term memory (LSTM) or gated recurrent units (GRU) structure, combined with shallow artificial neural networks (ANN) with multilayer perceptron (MLP) structure, is established. RNN models have a particular configuration that makes them efficient for processing ordered data in time series. The results of this work have been obtained through controlled experiments with different configurations of its hyperparameters for hybrid RNN-ANN models. From these, the three models with the best performance are selected, and after a comparative analysis between them, the forecasting of photovoltaic energy production for the next few hours can be determined with a determination coefficient of 0.97 and root mean square error (RMSE) of 0.17. It is concluded that the proposed and implemented models are functional and capable of predicting with a high level of accuracy the photovoltaic energy production of the solar plant, based on historical data on photovoltaic energy production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.