A radiological dispersal device (RDD) is a simple weapon capable of causing human harm, environmental contamination, disruption, area denial, and economic cost. It can affect small, large, or long areas depending on atmospheric stability. The risk of developing a radio-induced cancer depends on exposure, and an effective response depends upon available timely guidance. This article proposes and demonstrates a convergence of three different capabilities to assess risk and support rapid safe resource efficient response. The three capabilities that are integrated are Hotspot for dispersion, RERF for epidemiological risk, and RESRAD-RDD for response guidance. The combined methodology supports decisions on risk reduction and resource allocation through work schedules, the designation and composition of response teams, and siting for operations. In the illustrative RDD scenario, the contamination area for sheltering, evacuation, and long-term public concern was greatest for calm atmospheric conditions, whilst close-quarter responders faced highest dose rates for neutral atmospheric conditions. Generally, the risks to women responders were found to be significantly greater than for men, and the risks to 20-year-old responders were three times that of their 60-year-old counterparts for similar exposure.
This work aims at presenting a study using Monte Carlo simulation of a Multileaf Shielding (MLS) System designed to be used for the protection of patients who undergo radiotherapy treatment, against undesired exposure to neutrons produced in the components of the medical linear accelerator heads. The choice of radiotherapy equipment as the subject of study fell on the Varian Clinac 2,100/2,300 with MLC-120 operating at 18 MeV. The general purpose Monte Carlo N-Particle radiation transport code, MCNP5, was used in the computer simulation in order to determine the ambient dose equivalent, H (10), on several points on the patient's plane, with the equipment operation with and without the MLS. The results of the simulations showed a significant neutron dose reduction after the inclusion of the proposed shielding.
The National Council on Radiation Protection and Measurements (NCRP) Report No. 151 is an essential document for bunker design commonly applied for radiotherapy treatment rooms. This document is used as a reference by several countries, including Brazil. The objective of this study is to evaluate the shielding dimensioning methodology recommended by NCRP 151, and compare it with the one adopted by the Brazilian regulatory authority. Radiotherapy rooms and respective doors were designed to use linear accelerators operating at 6, 10, 15, and 18 MeV under two different ways: (a) applying exclusively the methodology recommended by the NCRP 151, and (b) taking into consideration the complementary recommendations from the Brazilian authorities. The results suggest that designers in Brazil can count on at least 4 and 11% safety margin for dimensioning primary barriers in controlled and free areas respectively. Also 8% for secondary barriers in controlled areas, 9.7% for secondary barriers adjacent to the primary belt of free areas, and 6.6% for the lead of the doors.
In men, prostate cancer is one of the most frequent types, and radiotherapy is adopted as a form of treatment. Although there are efforts to minimize the dose in the healthy organ and tissues adjacent to the tumor during radiotherapy, these organs are affected by the secondary scattered and leakage radiation originating from the therapeutic beam and these doses deposited in the healthy organs, can induce the appearance of new focal points of cancer. The aim of this study is to calculate the equivalent and effective doses, due to photons and neutrons, in healthy organs of a patient submitted to radiotherapy treatment for prostate cancer. Computed simulation of radiotherapy treatment for prostate cancer was used to perform the dose calculations, adopting the treatment protocol used at INCA (Brazilian National Cancer Institute). The MCNPX code was employed in the simulation radiation transport while the male voxel MAX phantom was used to represent the patient's human anatomy. The results obtained in this study indicate that the organs close to the irradiated region are predominantly affected by the dose due to photons, with an impact on organs from different systems of the body, such as the bladder, colon, and testicles, besides bone structures such as the femur, pelvis and spinal column. The results obtained from the doses deposited due to neutrons suggest that tibia and fibula, mandible, cranium, brain and thyroid, had the highest dose deposited due to neutrons in relation to photons. The result obtained from the effective dose was 31.47 mSv due to photons, while the dose due to neutrons was 0.42 mSv. Note that the effective dose due to photons is significantly higher than the effective dose due to neutrons. The values calculated in this study were compared with the experimental values obtained in the literature, presenting reasonable concordance. Additionally, as described in the literature, it was verified that the dose due to photons decreases considerably with the increase in the distance of the target organ, while the dose due to neutrons is distributed homogeneously in the organs. It is concluded that the contribution of neutrons to the appearance of secondary cancers is more relevant in the organs furthest from the target volume, and that organs close to the tumor, are affected predominantly by the dose due to photons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.