The location and mechanisms of leukocyte sequestration in the pulmonary circulation have been investigated by using high-magnification in vivo videomicroscopy to record the passage of unlabeled native leukocytes through canine pulmonary capillaries. Of 650 leukocytes traversing capillary networks, 46 +/- 6% (SE) of the leukocytes passed through without stopping, 42 +/- 9% stopped in segments between junctions, and 12 +/- 4% stopped in junctions. Leukocytes rolling along arteriolar walls were nearly spherical, as 94% had aspect ratios (major axis divided by minor axis) < or = 1.25. To pass through the capillary bed, the leukocytes deformed into elongated shapes. Many leukocytes remained elongated after entering the venules (53% had aspect ratios > or = 1.25). Venular rolling was blocked by fucoidin (blocking both L- and P-selectin) but not by anti-P-selectin antibodies alone, indicating that rolling leukocytes adhered to the venular endothelium by L-selectin. These observations demonstrate that leukocytes deform to transit the capillary bed, that they stop more frequently in segments than in junctions, and that rolling leukocytes in the venular marginated pool adhere via L-selectin.
Although the lung is known to be a major site of neutrophil margination, the anatomic location of these sequestered cells within the lung is controversial. To determine the site of margination and the kinetics of neutrophil transit through the pulmonary microvasculature, we infused fluorescein isothiocyanate-labeled canine neutrophils into the pulmonary arteries of 10 anesthetized normal dogs and made fluorescence videomicroscopic observations of the subpleural pulmonary microcirculation through a window inserted into the chest wall. The site of fluorescent neutrophil sequestration was exclusively in the pulmonary capillaries with a total of 951 labeled cells impeded in the capillary bed for a minimum of 2 s. No cells were delayed in the arterioles or venules. Transit times of individual neutrophils varied over a wide range from less than 2 s to greater than 20 min with an exponential distribution skewed toward rapid transit times. These observations indicate that neutrophil margination occurs in the pulmonary capillaries with neutrophils impeded for variable periods of time on each pass through the lung. The resulting wide distribution of transit times may determine the dynamic equilibrium between circulating and marginated neutrophils.
No abstract
Pulmonary microvessels (<70 microm) lack a complete muscular media. We tested the hypothesis that these thin-walled vessels do not participate in the hypoxic pressor response. Isolated canine lobes were pump perfused at precisely known microvascular pressures. A videomicroscope, coupled to a computerized image-enhancement system, permitted accurate diameter measurements of subpleural arterioles and venules, with each vessel serving as its own control. While vascular pressure was maintained constant throughout the protocol, hypoxia caused an average reduction of 25% of microvessel diameters. The constriction was reversed when nitric oxide was added to the hypoxic gas mixture. The nitric oxide reversal, combined with a lack of lobar blood flow redistribution as measured by fluorescent microspheres, shows that the constriction was active. This response suggests the unexpected potential for active intra-acinar ventilation-perfusion matching.
Capillaries recruit when pulmonary arterial pressure rises. The duration of increased pressure imposed in such experiments is usually on the order of minutes, although recent work shows that the recruitment response can occur in <4 s. In the present study, we investigate whether the brief pressure rise during cardiac systole can also cause recruitment and whether the recruitment is maintained during diastole. To study these basic aspects of pulmonary capillary hemodynamics, isolated dog lungs were pump perfused alternately by steady flow and pulsatile flow with the mean arterial and left atrial pressures held constant. Several direct measurements of capillary recruitment were made with videomicroscopy. The total number and total length of perfused capillaries increased significantly during pulsatile flow by 94 and 105%, respectively. Of the newly recruited capillaries, 92% were perfused by red blood cells throughout the pulsatile cycle. These data provide the first direct account of how the pulmonary capillaries respond to pulsatile flow by showing that capillaries are recruited during the systolic pulse and that, once open, the capillaries remain open throughout the pulsatile cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.