A premixed flame burner system was utilised to synthesise carbon nanotubes (CNTs). The morphologies of highly-graphitic carbon nanotubes were characterised by using transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). The XRD analysis shows the spectrum of a typical CNT, while TEM imaging shows the physical structure of the carbon nanotubes. CNTs were grown effectively on a Ni-contained substrate in an elevated temperature environment. The flame synthesised CNTs were of high crystalline, multi-wall structure, and contained relatively less impurities and amorphous carbon. The CNT intershell spacing values quantified using TEM and XRD are 0.317 nm and 0.344 nm respectively. CNTs produced from flame synthesis are based on the tip-growth model and vapor-liquid-solid (VLS) mechanism.
The present study focuses on the characterization of carbon nanotubes (CNTs) synthesized from flame under an atmospheric condition. A laminar flame burner was utilized to establish a rich premixed propane/air flame at the equivalence ratio = 1.8-2.2. The flame was impinged on a stainless steel wire mesh coated with nickel (Ni) catalyst to grow CNTs. Distribution and yield of the CNTs on the substrate were quantified. Carbon nanotubes formed on the substrate were harvested and characterized using scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and thermogravimetric analysis (TGA). The FESEM micrograph showed that the CNTs produced were in disarray. The synthesized CNTs were an average of 50-60 nm in diameter while the length of the tubes was in the order of microns. TGA analysis showed that 75% of CNTs were present in the sample and the oxidation temperature was 510°C.
A self‐cleaning mixed‐matrix membrane was successfully developed and fabricated using the reverse thermally induced phase separation (RTIPS) method, incorporating modified particles. To achieve this, DA@CuFe2O4 particles were prepared by modifying CuFe2O4 with dopamine (DA) and then fed into the membrane matrix. The RTIPS method was employed to create hydrophilic membranes that exhibited remarkable stability and toughness. X‐ray diffraction, Fourier‐transform infrared (FTIR), transmission electron microscopy, and thermogravimetric analysis results showed that the particles were successfully modified. XPS, scanning electron microscopy, and FTIR proved that the modified particles were introduced into the film. The EDS spectra also showed that the self‐made CuFe2O4 particles with DA adsorbed on the surface were uniformly distributed in the organic matter. In addition, the results of the contact angle characterization, tensile test, water flux test, oil–water separation test, and cycle test showed that the material with a high water flux (1707.78 L/m2 h) and removal rate of >99.9% has good wettability, mechanical properties, corrosion resistance, and stain resistance. In addition, the photocatalytic performance of the modified membranes was demonstrated by studying the degradation of pollutants under visible light. Through photocatalysis, the membrane material obtained a higher utilization rate, which provided a new attempt to solve the membrane separation technology in the field of oily wastewater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.