Using a recently described serum-free culture system of purified human CD34+ progenitor cells, we show here a critical cooperation of flt3 ligand (FL) with transforming growth factor-β1 (TGF-β1) in the induction of in vitro dendritic cell/Langerhans cell (DC/LC) development. The addition of FL to serum-free cultures of CD34+ cells supplemented with TGF-β1, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor α, and stem cell factor strongly increases both percentages (mean, 36% ± 5% v 64% ± 4%; P = .001) and total numbers (4.4- ± 0.8-fold) of CD1a+ dendritic cells. These in vitro-generated CD1a+ cells molecularly closely resemble a particular type of DC known as an epidermal Langerhans cell. Generation of DC under serum-free conditions was found to strictly require supplementation of culture medium with TGF-β1. Upon omission of TGF-β1, percentages of CD1a+ DC decreased (to mean, 10% ± 8%; P = .001) and, in turn, percentages of granulomonocytic cells (CD1a− cells that are lysozyme [LZ+]; myeloperoxidase [MPO+]; CD14+) increased approximately threefold (P < .05). Furthermore, in the absence of TGF-β1, FL consistently promotes generation of LZ+, MPO+, and CD14+ cells, but not of CD1a+ cells. Serum-free single-cell cultures set up under identical TGF-β1– and FL-supplemented culture conditions showed that high percentages of CD34+ cells (mean, 18% ± 2%; n = 4) give rise to day-10 DC colony formation. The majority of cells in these DC-containing colonies expressed the Langerhans cell/Birbeck granule specific marker molecule Lag. Without TGF-β1 supplementation, Lag+ colony formation is minimal and formation of monocyte/macrophage-containing colonies predominates. Total cloning efficiency in the absence and presence of TGF-β1 is virtually identical (mean, 41% ± 6% v 41% ± 4%). Thus, FL has the potential to strongly stimulate DC/LC generation, but has a strict requirement for TGF-β1 to show this costimulatory effect.
The transmembrane glycoprotein CD34 shows a highly restricted expression on a crucial subset of hematopoietic cells. We show here that engagement of particular determinants of CD34 can lead to signal transduction and to enhanced adhesiveness of CD34+ hematopoietic cells. Monoclonal antibodies (MoAbs) directed against O-sialoglycoprotease- sensitive epitopes of CD34 (QBEND10, ICH3, BI.3C5, MY10) but not MoAbs against O-sialoglycoprotease-resistant epitopes (9F2, 8G12) induce actin polymerization in KG-1a and KG-1 cells and strongly enhanced cytoadhesiveness. The capacity to induce adhesion requires cellular energy, divalent cations, and intact cytoskeleton but not de novo protein synthesis. The observed cytoadhesion seems at least in part to be caused by a concomitant activation of the beta 2 integrin cytoadhesion pathway. It can be significantly inhibited with lymphocyte function-associated antigen-1 and intercelluar adhesion molecule-1 antibodies. Protein kinase inhibition analyses suggest that the pathways initiated by engagement of the CD34 molecule with certain CD34 MoAbs involves protein tyrosine kinases but that protein kinase C is not critically involved.
In a majority of all patients with systemic mastocytosis (SM) including aggressive SM and mast cell leukemia (MCL), neoplastic cells display the D816V-mutated variant of KIT. The respective oncoprotein, KIT-D816V, exhibits constitutive tyrosine kinase (TK) activity and has been implicated in malignant cell growth. Therefore, several attempts have been made to identify KIT-D816V-targeting drugs. We found that the TK-inhibitor dasatinib (BMS-354825) inhibits TK activity of wild type (wt) KIT and KIT-D816V in Ba/F3 cells with doxycycline-inducible KIT-expression. In addition, dasatinib was found to inhibit KIT D816V-induced cluster formation and viability in Ba/F3 cells as well as growth of HMC-1.1 cells (KIT-D816V-negative) and HMC-1.2 cells (KIT-D816V-positive). The effects of dasatinib on growth of HMC-1 cells were dose-dependent, with 100–1,000-fold higher IC50-values in cells harbouring KIT-D816V compared to cells lacking KIT-D816V. Furthermore, dasatinib was found to inhibit the growth of primary neoplastic mast cells in SM in all patients examined. The inhibitory effects of dasatinib in HMC-1 cells were found to be associated with apoptosis and a decrease in expression of CD2 and CD63 as determined by flow cytometry. In addition, dasatinib was found to cooperate with the tyrosine kinase inhibitors PKC412 (midostaurin), AMN107 (nilotinib), and STI571 (imatinib), as well as with 2CdA (cladribine) in producing growth-inhibition in neoplastic mast cells. In HMC-1.1 cells, all drug-interactions applied were found to be synergistic. By contrast, in HMC-1.2 cells, only the combinations “dasatinib+PKC412” and “dasatinib+2CdA” were found to produce synergistic effects. These drug-combinations may thus represent an interesting pharmacologic approach for the treatment of patients with aggressive systemic mastocytosis or mast cell leukemia.
Our data demonstrate immunophenotypic, cytogenetic, and molecular heterogeneity of NT-ALL and favorable prognosis of most NT-ALL across different immunophenotypic and/or genetic ALL subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.