In [FeFe]-hydrogenases, the H cluster (hydrogen-activating cluster) contains a di-iron centre ([2Fe]H subcluster, a (L)(CO)(CN)Fe(mu-RS2)(mu-CO)Fe(CysS)(CO)(CN) group) covalently attached to a cubane iron-sulphur cluster ([4Fe-4S]H subcluster). The Cys-thiol functions as the link between one iron (called Fe1) of the [2Fe]H subcluster and one iron of the cubane subcluster. The other iron in the [2Fe]H subcluster is called Fe2. The light sensitivity of the Desulfovibrio desulfuricans enzyme in a variety of states has been studied with infrared (IR) spectroscopy. The aerobic inactive enzyme (H(inact) state) and the CO-inhibited active form (H(ox)-CO state) were stable in light. Illumination of the H(ox) state led to a kind of cannibalization; in some enzyme molecules the H cluster was destroyed and the released CO was captured by the H clusters in other molecules to form the light-stable H(ox)-CO state. Illumination of active enzyme under 13CO resulted in the complete exchange of the two intrinsic COs bound to Fe2. At cryogenic temperatures, light induced the photodissociation of the extrinsic CO and the bridging CO of the enzyme in the H(ox)-CO state. Electrochemical redox titrations showed that the enzyme in the H(inact) state converts to the transition state (H(trans)) in a reversible one-electron redox step (E (m, pH 7) = -75 mV). IR spectra demonstrate that the added redox equivalent not only affects the [4Fe-4S]H subcluster, but also the di-iron centre. Enzyme in the H(trans) state reacts with extrinsic CO, which binds to Fe2. The H(trans) state converts irreversibly into the H(ox) state in a redox-dependent reaction most likely involving two electrons (E (m, pH 7) = -261 mV). These electrons do not end up on any of the six Fe atoms of the H cluster; the possible destiny of the two redox equivalents is discussed. An additional reversible one-electron redox reaction leads to the H(red) state (E (m, pH 7) = -354 mV), where both Fe atoms of the [2Fe]H subcluster have the same formal oxidation state. The possible oxidation states of Fe1 and Fe2 in the various enzyme states are discussed. Low redox potentials (below -500 mV) lead to destruction of the [2Fe]H subcluster.
[NiFe] hydrogenases catalyze the reversible heterolytic cleavage of molecular hydrogen. Several oxidized, inactive states of these enzymes are known that are distinguishable by their very different activation properties. So far, the structural basis for this difference has not been understood because of lack of relevant crystallographic data. Here, we present the crystal structure of the ready Ni-B state of Desulfovibrio fructosovorans [NiFe] hydrogenase and show it to have a putative mu-hydroxo Ni-Fe bridging ligand at the active site. On the other hand, a new, improved refinement procedure of the X-ray diffraction data obtained for putative unready Ni-A/Ni-SU states resulted in a more elongated electron density for the bridging ligand, suggesting that it is a diatomic species. The slow activation of the Ni-A state, compared with the rapid activation of the Ni-B state, is therefore proposed to result from the different chemical nature of the ligands in the two oxidized species. Our results along with very recent electrochemical studies suggest that the diatomic ligand could be hydro-peroxide.
The iron-sulfur-cluster-free hydrogenase Hmd (H(2)-forming methylenetetrahydromethanopterin dehydrogenase) from methanogenic archaea has recently been found to contain one iron associated tightly with an extractable cofactor of yet unknown structure. We report here that Hmd contains intrinsic CO bound to the Fe. Chemical analysis of Hmd revealed the presence of 2.4 +/- 0.2 mol of CO/mol of iron. Fourier transform infrared spectra of the native enzyme showed two bands of almost equal intensity at 2011 and 1944 cm(-)(1), interpreted as the stretching frequencies of two CO molecules bound to the same iron in an angle of 90 degrees . We also report on the effect of extrinsic (12)CO, (13)CO, (12)CN(-), and (13)CN(-) on the IR spectrum of Hmd.
The hydrogen-activating cluster (H cluster) in [FeFe]-hydrogenases consists of two moieties. The [2Fe]H subcluster is a (L)(CO)(CN)Fe(mu-RS2)(mu-CO)Fe(CysS)(CO)(CN) centre. The Cys-bound Fe is called Fe1, the other iron Fe2. The Cys-thiol forms a bridge to a [4Fe-4S] cluster, the [4Fe-4S]H subcluster. We report that electron paramagnetic resonance (EPR) spectra of the 57Fe-enriched enzyme from Desulfovibrio desulfuricans in the H(ox)-CO state are consistent with a magnetic hyperfine interaction of the unpaired spin with all six Fe atoms of the H cluster. In contrast to the inactive aerobic enzyme, the active enzyme is easily destroyed by light. The [2Fe]H subcluster in some enzyme molecules loses CO by photolysis, whereupon other molecules firmly bind the released CO to form the H(ox)-CO state giving rise to the so-called axial 2.06 EPR signal. Though not destroyed by light, the H(ox)-CO state is affected by it. As demonstrated in the accompanying paper [49] two of the intrinsic COs, both bound to Fe2, can be exchanged by extrinsic 13CO during illumination at 2 degrees C. We found that only one of the three 13COs, the one at the extrinsic position, gives an EPR-detectable isotropic superhyperfine interaction of 0.6 mT. At 30 K both the inhibiting extrinsic CO bound to Fe2 and one more CO can be photolysed. EPR spectra of the photolysed products are consistent with a 3d7 system of Fe with the formal oxidation state +1. The damaged enzyme shows a light-sensitive g = 5 signal which is ascribed to an S = 3/2 form of the [2Fe](H) subcluster. The light sensitivity of the enzyme explains the occurrence of the g = 5 signal and the axial 2.06 signal in published EPR spectra of nearly all preparations studied thus far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.