Bionanocombinatorics is an emerging field that aims to use combinations of positionally encoded biomolecules and nanostructures to create materials and devices with unique properties or functions. The full potential of this new paradigm could be accessed by exploiting specific noncovalent interactions between diverse palettes of biomolecules and inorganic nanostructures. Advancement of this paradigm requires peptide sequences with desired binding characteristics that can be rationally designed, based upon fundamental, molecular-level understanding of biomolecule-inorganic nanoparticle interactions. Here, we introduce an integrated method for building this understanding using experimental measurements and advanced molecular simulation of the binding of peptide sequences to gold surfaces. From this integrated approach, the importance of entropically driven binding is quantitatively demonstrated, and the first design rules for creating both enthalpically and entropically driven nanomaterial-binding peptide sequences are developed. The approach presented here for gold is now being expanded in our laboratories to a range of inorganic nanomaterials and represents a key step toward establishing a bionanocombinatorics assembly paradigm based on noncovalent peptide-materials recognition.
Quantum dots (QDs) have size-dependent optical properties that make them uniquely advantageous for in vivo targeted fluorescence imaging, traceable delivery, and therapy. The use of group II-VI (e.g., CdSe) QDs for these applications is advancing rapidly. However, group II-VI QDs contain toxic heavy metals that limit their in vivo applications. Thus, replacing these with QDs of a biocompatible semiconductor, such as silicon (Si), is desirable. Here, we demonstrate that properly encapsulated biocompatible Si QDs can be used in multiple cancer-related in vivo applications, including tumor vasculature targeting, sentinel lymph node mapping, and multicolor NIR imaging in live mice. This work overcomes dispersibility and functionalization challenges to in vivo imaging with Si QDs through a unique nanoparticle synthesis, surface functionalization, PEGylated micelle encapsulation, and bioconjugation process that produces bright, targeted nanospheres with stable luminescence and long (>40 h) tumor accumulation time in vivo. Upon the basis of this demonstration, we anticipate that Si QDs can play an important role in more sophisticated in vivo models, by alleviating QD toxicity concerns while maintaining the key advantages of QD-based imaging methods.
We have synthesized core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with an average size of 15 nm and exceptionally high photoluminescence (PL) quantum yield. When excited at 740 nm, the nanocrystals manifest spectrally distinguished, near infrared to near infrared (NIR-to-NIR) downconversion PL peaked at ~900, ~1050, and ~1300 nm. The absolute quantum yield of NIR-to-NIR PL reached 40% for core-shell nanoparticles dispersed in hexane. Time-resolved PL measurements revealed that this high quantum yield was achieved through suppression of nonradiative recombination originating from surface states and cross relaxations between dopants. NaGdF4:Nd3+/NaGdF4 nanocrystals, synthesized in organic media, were further converted to be water-dispersible by eliminating the capping ligand of oleic acid. NIR-to-NIR PL bioimaging was demonstrated both in vitro and in vivo through visualization of the NIR-to-NIR PL at ~900 nm under incoherent lamp light excitation. The fact that both excitation and the PL of these nanocrystals are in the biological window of optical transparency, combined with their high quantum efficiency, spectral sharpness and photostability, makes these nanocrystals extremely promising as optical biomaging probes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.