Thermally removable nanoparticle templates were used for the fabrication of self-supported N-doped mesoporous carbons with a trace amount of Fe (Fe-N/C). Experimentally Fe-N/C was prepared by pyrolysis of poly(2-fluoroaniline) (P2FANI) containing a number of FeO(OH) nanorods that were prepared by a one-pot hydrothermal synthesis and homogeneously distributed within the polymer matrix. The FeO(OH) nanocrystals acted as rigid templates to prevent the collapse of P2FANI during the carbonization process, where a mesoporous skeleton was formed with a medium surface area of about 400 m(2)/g. Subsequent thermal treatments at elevated temperatures led to the decomposition and evaporation of the FeO(OH) nanocrystals and the formation of mesoporous carbons with the surface area markedly enhanced to 934.8 m(2)/g. Electrochemical measurements revealed that the resulting mesoporous carbons exhibited apparent electrocatalytic activity for oxygen reduction reactions (ORR), and the one prepared at 800 °C (Fe-N/C-800) was the best among the series, with a more positive onset potential (+0.98 V vs RHE), higher diffusion-limited current, higher selectivity (number of electron transfer n > 3.95 at +0.75 V vs RHE), much higher stability, and stronger tolerance against methanol crossover than commercial Pt/C catalysts in a 0.1 M KOH solution. The remarkable ORR performance was attributed to the high surface area and sufficient exposure of electrocatalytically active sites that arose primarily from N-doped carbons with minor contributions from Fe-containing species.
Bionanocombinatorics is an emerging field that aims to use combinations of positionally encoded biomolecules and nanostructures to create materials and devices with unique properties or functions. The full potential of this new paradigm could be accessed by exploiting specific noncovalent interactions between diverse palettes of biomolecules and inorganic nanostructures. Advancement of this paradigm requires peptide sequences with desired binding characteristics that can be rationally designed, based upon fundamental, molecular-level understanding of biomolecule-inorganic nanoparticle interactions. Here, we introduce an integrated method for building this understanding using experimental measurements and advanced molecular simulation of the binding of peptide sequences to gold surfaces. From this integrated approach, the importance of entropically driven binding is quantitatively demonstrated, and the first design rules for creating both enthalpically and entropically driven nanomaterial-binding peptide sequences are developed. The approach presented here for gold is now being expanded in our laboratories to a range of inorganic nanomaterials and represents a key step toward establishing a bionanocombinatorics assembly paradigm based on noncovalent peptide-materials recognition.
Controllable 3D assembly of multicomponent inorganic nanomaterials by precisely positioning two or more types of nanoparticles to modulate their interactions and achieve multifunctionality remains a major challenge. The diverse chemical and structural features of biomolecules can generate the compositionally specific organic/inorganic interactions needed to create such assemblies. Toward this aim, we studied the materials-specific binding of peptides selected based upon affinity for Ag (AgBP1 and AgBP2) and Au (AuBP1 and AuBP2) surfaces, combining experimental binding measurements, advanced molecular simulation, and nanomaterial synthesis. This reveals, for the first time, different modes of binding on the chemically similar Au and Ag surfaces. Molecular simulations showed flatter configurations on Au and a greater variety of 3D adsorbed conformations on Ag, reflecting primarily enthalpically driven binding on Au and entropically driven binding on Ag. This may arise from differences in the interfacial solvent structure. On Au, direct interaction of peptide residues with the metal surface is dominant, while on Ag, solvent-mediated interactions are more important. Experimentally, AgBP1 is found to be selective for Ag over Au, while the other sequences have strong and comparable affinities for both surfaces, despite differences in binding modes. Finally, we show for the first time the impact of these differences on peptide mediated synthesis of nanoparticles, leading to significant variation in particle morphology, size, and aggregation state. Because the degree of contact with the metal surface affects the peptide’s ability to cap the nanoparticles and thereby control growth and aggregation, the peptides with the least direct contact (AgBP1 and AgBP2 on Ag) produced relatively polydispersed and aggregated nanoparticles. Overall, we show that thermodynamically different binding modes at metallic interfaces can enable selective binding on very similar inorganic surfaces and can provide control over nanoparticle nucleation and growth. This supports the promise of bionanocombinatoric approaches that rely upon materials recognition.
In this study, a general and effective phosphorization strategy is successfully demonstrated to enhance supercapacitor performance of various transition metals oxide or hydroxide, such as Ni(OH) 2 , Co(OH) 2 , MnO 2 , and Fe 2 O 3 . For example, a 3D networked Ni 2 P nanosheets array via a facile phosphorization reaction of Ni(OH) 2 nanosheets is grown on the surface of a Ni foam. The Ni foam-supported Ni 2 P nanosheet (Ni 2 P NS/NF) electrode shows a remarkable specifi c capacitance of 2141 F g −1 at a scan rate of 50 mV s −1 and remains as high as 1109 F g −1 even at the current density of 83.3 A g −1 . The specifi c capacitance is much larger than those of Ni(OH) 2 NS/NF (747 F g −1 at 50 mV s −1 ). Furthermore, the electrode retains a high specifi c capacitance of 1437 F g −1 even after 5000 cycles at a current density of 10 A g −1 , in sharp contrast with only 403 F g −1 of Ni(OH) 2 NS/NF at the same current density. The similar enhanced performance is observed for Ni 2 P powder, which eliminates the infl uence of nickel foam. The enhanced supercapacitor performances are attributed to the 3D porous nanosheets network, enhanced conductivity, and two active components of Ni 2+ and P δ − with rich valences of Ni 2 P.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.