Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents.
SUMMARY1. The membrane properties of substantia nigra pars compacta neurones were studied using an in vitro slice preparation of guinea-pig midbrain.2. Neurones were divided into two classes based on their electrophysiological properties: bursting neurones displayed a burst of several rapidly accommodating action potentials in response to relaxation of hyperpolarizing current injected through the microelectrode, while non-bursting neurones produced regularly spaced action potentials. These neuronal types were found to be electrophysiologically distinct from those recorded in the substantia nigra pars reticulata and the subthalamic nucleus.3. Non-bursting neurones, which comprised ca 85% of the sampled cells, were characterized by a slow, pacemaker pattern of firing at rest, broad action potentials, a pronounced spike after-hyperpolarization, long membrane time constants, and strong transient outward and time-dependent inward rectification.4. Bursting neurones, comprising ca 15% of the sample, displayed rapid firing rates at rest, fast action potentials, a shallow spike after-hyperpolarization and briefer membrane time constants. All of these parameters were significantly different from those of the non-bursting type. Bursting neurones lacked transient outward or time-dependent inward rectification.5. Both types of cells were capable of generating pronounced calcium-dependent, low-threshold spikes in the presence of tetrodotoxin (TTX). However, only the nonbursting type displayed calcium-dependent rhythmic oscillations in membrane potential near resting potential in the presence of TTX. The firing rate, action potential shape and after-hyperpolarization of non-bursting neurones were strongly influenced by calcium-dependent currents.6. The majority of cells were injected with biocytin, which allowed morphological reconstruction of the neurones and confirmation of their location within the pars compacta. Non-bursting neurones had variable soma shapes and their dendrites were mostly directed in a medio-lateral direction. Many cells extended some of their dendrites into the pars reticulata. Bursting neurones were mainly fusiform in shape with their dendrites oriented in a medio-lateral direction; a few had dendrites extending into the pars reticulata. 7. Thirty-six neurones were also double labelled using a combination of biocytin Non-bursting neurones all displayed TH immunofluorescence, while none of the bursting neurones were TH positive. 8. Bursting neurones were found predominantly in the dorsal part of the rostral pars compacta, while non-bursting cells were found throughout. The distribution of bursting neurones paralleled the distribution of glutamic acid decarboxylase (GAD)-immunoreactive neurones in the pars compacta.9. These results strongly suggest that non-bursting cells are dopaminergic, while bursting cells are non-dopaminergic, and probably GABAergic. Possible functional correlates of these cell types are discussed.
Blood pressure is maintained within a normal physiological range by a sophisticated regulatory mechanism. Baroreceptors serve as a frontline sensor to detect the change in blood pressure. Nerve signals are then sent to the cardiovascular control centre in the brain in order to stimulate baroreflex responses. Here, we identify TRPC5 channels as a mechanical sensor in aortic baroreceptors. In Trpc5 knockout mice, the pressure-induced action potential firings in the afferent nerve and the baroreflex-mediated heart rate reduction are attenuated. Telemetric measurements of blood pressure demonstrate that Trpc5 knockout mice display severe daily blood pressure fluctuation. Our results suggest that TRPC5 channels represent a key pressure transducer in the baroreceptors and play an important role in maintaining blood pressure stability. Because baroreceptor dysfunction contributes to a variety of cardiovascular diseases including hypertension, heart failure and myocardial infarction, our findings may have important future clinical implications.
Prolonged exposure to negative stressors could be harmful if a subject cannot respond appropriately. Strategies evolved to respond to stress, including repetitive displacement behaviours, are important in maintaining behavioural homoeostasis. In rodents, self-grooming is a frequently observed repetitive behaviour believed to contribute to post-stress de-arousal with adaptive value. Here we identified a rat limbic di-synaptic circuit that regulates stress-induced self-grooming with positive affective valence. This circuit links hippocampal ventral subiculum to ventral lateral septum (LSv) and then lateral hypothalamus tuberal nucleus. Optogenetic activation of this circuit triggers delayed but robust excessive grooming with patterns closely resembling those evoked by emotional stress. Consistently, the neural activity of LSv reaches a peak before emotional stress-induced grooming while inhibition of this circuit significantly suppresses grooming triggered by emotional stress. Our results uncover a previously unknown limbic circuitry involved in regulating stress-induced self-grooming and pinpoint a critical role of LSv in this ethologically important behaviour.
1. The properties of stimulus-evoked and spontaneous inhibitory synaptic potentials were examined in guinea-pig substantia nigra dopamine neurones in sagittal and coronal midbrain slices in the presence of glutamate receptor antagonists. 2. Focal electrical stimulation within the substantia nigra, cerebral peduncle, internal capsule or the striatum evoked a biphasic IPSP consisting of a fast and a slow component, with peak latencies of about 30 and 250 ms, respectively. The fast component was sensitive to chloride injection, reversed polarity at -79.4 +/- 1.1 mV and was blocked by the GABAA receptor antagonists picrotoxin and bicuculline. The slow IPSP reversed at -99.3 +/- 5.4 mV and was blocked by the GABAB receptor antagonists 2-hydroxysaclofen and CGP 35348. 3. Spontaneous IPSPs were observed in many neurones. These events reversed polarity at -77.5 +/- 2.6 mV and were completely blocked by bicuculline and/or picrotoxin. In the presence of TTX, small spontaneous events remained which probably represent miniature IPSPs. In coronal slices, application of 4-aminopyridine raised the frequency of spontaneous IPSPs, presumably by activating nigral interneurones, but failed to reveal spontaneous biphasic IPSPs or spontaneous pure slow IPSPs. 4. The amplitude of the fast IPSPs fluctuated from trial to trial. Amplitude histograms of minimal fast IPSPs displayed evenly spaced peaks, suggesting that synaptic transmission is quantal at these synapses. The measured peak spacing depended on the driving force for Cl-. 5. The fast IPSP showed little or no paired-pulse depression, and in the presence of 2-hydroxysaclofen (400-600 microM) showed paired-pulse facilitation. The GABAB agonist baclofen inhibited the fast IPSP via a presynaptic mechanism. The pharmacologically isolated slow IPSP showed marked paired-pulse facilitation. 6. It is concluded that synaptic inhibition in the substantia nigra is mediated by GABA, is relatively resistant to frequency-dependent depression and is regulated by presynaptic GABAB autoreceptors. Striatonigral and pallidonigral fibres activate both GABAA and GABAB receptors, while intranigral pathways appear to activate predominantly GABAA receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.