Background Exercise prevents falls in older adults. Regular updates of estimated effects of exercise on falls are warranted given the number of new trials, the increasing number of older people globally and the major consequences of falls and fall-related injuries. Methods This update of a 2019 Cochrane Review was undertaken to inform the World Health Organization guidelines on physical activity and sedentary behaviour. Searches were conducted in six databases. We included randomised controlled trials evaluating effects of any form of physical activity as a single intervention on falls in people aged 60+ years living in the community. Analyses explored dose-response relationships. The certainty of the evidence was assessed using Grading of Recommendations Assessment, Development and Evaluation (GRADE). Results This review included 116 studies, involving 25,160 participants; nine new studies since the 2019 Cochrane Review. Exercise reduces the rate of falls by 23% (pooled rate ratio (RaR) 0.77, 95% confidence interval (CI) 0.71 to 0.83, 64 studies, high certainty evidence). Subgroup analysis showed variation in effects of different types of exercise (p < 0.01). Rate of falls compared with control is reduced by 24% from balance and functional exercises (RaR 0.76, 95% CI 0.70 to 0.82, 39 studies, high certainty evidence), 28% from programs involving multiple types of exercise (commonly balance and functional exercises plus resistance exercises, RaR 0.72, 95% CI 0.56 to 0.93, 15 studies, moderate certainty evidence) and 23% from Tai Chi (RaR 0.77, 95% CI 0.61 to 0.97, 9 studies, moderate certainty evidence). The effects of programs that primarily involve resistance training, dance or walking remain uncertain. Interventions with a total weekly dose of 3+ h that included balance and functional exercises were particularly effective with a 42% reduction in rate of falls compared to control (Incidence Rate Ratio (IRR) 0.58, 95% CI 0.45 to 0.76). Subgroup analyses showed no evidence of a difference in the effect on falls on the basis of participant age over 75 years, risk of falls as a trial inclusion criterion, individual versus group exercise, or whether a health professional delivered the intervention. Conclusions Given the strength of this evidence, effective exercise programs should now be implemented at scale.
Background Various physical activity interventions for prevention and treatment of osteoporosis have been designed and evaluated, but the effect of such interventions on the prevention of osteoporosis in older people is unclear. The aim of this review was to investigate the association between physical activity and osteoporosis prevention in people aged 65 years and above. Methods A systematic review was conducted and searches for individual studies were conducted in PubMed (January 2010 to March 2020) and for systematic reviews were conducted in PubMed, Embase, CINAHL and SPORTDiscus (January 2008 to July 2020). Records were screened according to the following eligibility criteria: i) population: adults aged 65 years and older; ii) exposure: greater volume, duration, frequency, or intensity of physical activity; iii) comparison: no physical activity or lesser volume, duration, frequency, or intensity of physical activity; iv) outcome: osteoporosis related measures (e.g., bone mineral density). The methodological quality of included studies was assessed and meta-analysis summarised study effects. The GRADE approach was used to rate certainty of evidence. Results We included a total of 59 studies, including 12 observational studies and 47 trials. Within the included trials, 40 compared physical activity with no intervention controls, 11 compared two physical activity programs, and six investigated different doses of physical activity. Included studies suggest that physical activity interventions probably improve bone health among older adults and thus prevent osteoporosis (standardised effect size 0.15, 95% CI 0.05 to 0.25, 20 trials, moderate-certainty evidence, main or most relevant outcome selected for each of the included studies). Physical activity interventions probably improve lumbar spine bone mineral density (standardised effect size 0.17, 95% CI 0.04 to 0.30, 11 trials, moderate-certainty evidence) and may improve hip (femoral neck) bone mineral density (standardised effect size 0.09, 95% CI − 0.03 to 0.21, 14 trials, low-certainty evidence). Higher doses of physical activity and programs involving multiple exercise types or resistance exercise appear to be most effective. Typical programs for which significant intervention impacts were detected in trials were undertaken for 60+ mins, 2–3 times/week for 7+ months. Observational studies suggested a positive association between long-term total and planned physical activity on bone health. Conclusions Physical activity probably plays a role in the prevention of osteoporosis. The level of evidence is higher for effects of physical activity on lumbar spine bone mineral density than for hip. Higher dose programs and those involving multiple exercises and resistance exercises appear to be more effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.