Since its invention in 1981, scanning tunnelling microscopy (STM) is well-known for its supreme imaging resolution enabling one to observe atomic-scale structures, which has led to the flourishing of nanoscience. As successful as it is, there still remain phenomena which are observed using STM but are beyond our understanding. Graphite is one of the surfaces which have been most extensively studied using STM. However, there are a number of unusual properties of graphite surfaces. First reported in the 1980s, superlattices on graphite have since been observed many times and by many groups, but as yet our understanding of this phenomenon is quite limited. Most of the observed superlattice phenomena are widely believed to be the result of a Moiré rotation pattern, arising from the misorientation between two graphite layers, as verified experimentally. A Moiré pattern is a lattice with larger periodicity resulting from the overlap of two lattices with smaller periodicities. As graphite layers are composed of hexagonal lattices with a periodicity of 0.246 nm, as observed using STM, when there are misoriented graphite layers overlapping each other, a Moiré pattern with larger periodicity, depending on the misorientation angle, will be produced and appear as a superperiodic hexagonal structure on top of the graphite atomic lattice of the topmost surface layer. It is important to study graphite superlattices because, firstly, knowledge of this phenomenon will enable us to properly interpret STM images; secondly, it helps us to understand the correlation between electronic structures and atomic-structure rearrangement of graphite which is of tremendous aid for engineering material properties; thirdly, and perhaps most importantly, the observation of the phenomenon exhibits the capability of STM to produce images indicating the nature of internal defects which are below the surface. Over recent years, experimental and modelling techniques have been developed to study this anomalous regime of STM; however, there is a lack of a systematic classification of this scattered information. This review article thus serves the purpose of organizing all these results so as to enable a more comprehensive understanding of this phenomenon. We review the discovery of graphite superlattices, the observation of the associated properties, and the research efforts on this subject. An effort is made to envision the future experimental and theoretical research possibilities to unveil the mystery of this anomaly of STM. Applications of graphite superlattices are also proposed.
A model of graphite which is easy to comprehend and simple to implement for the simulation of scanning tunneling microscopy (STM) images is described. This model simulates the atomic density of graphite layers, which in turn correlates with the local density of states. The mechanism and construction of such a model is explained with all the necessary details which have not been explicitly reported before. This model is applied to the investigation of rippling fringes which have been experimentally observed on a superlattice, and it is found that the rippling fringes are not related to the superlattice itself. A superlattice with abnormal topmost layers interaction is simulated, and the result affirms the validity of the moiré rotation pattern assumption. The “odd-even” transition along the atomic rows of a superlattice is simulated, and the simulation result shows that when there is more than one rotated layer at the top, the “odd-even” transition will not be manifest.
Superlattice structures and rippling fringes were imaged on two separate pieces of graphite (HOPG) by scanning tunnelling microscopy (STM). We observed the corrugation conservation phenomenon on one of the superlattice structures where an overlayer does not attenuate the corrugation amplitude of the superlattice. Such a phenomenon may illustrate an implication that nanoscale defects a few layers underneath the surface may propagate through many layers without decay and form the superlattice structure on the topmost surface. Some rippling fringes with periodicities of 20 nm and 30 nm and corrugations of 0.1 nm and 0.15 nm were observed in the superlattice area and in nearby regions. Such fringes are believed to be due to physical buckling of the surface. The stress required to generate such structures is estimated, and a possible cause is discussed. An equation relating the attenuation factor to the number of overlayers is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.