The gut microbiota has been implicated in cancer and shown to modulate anticancer drug efficacy. Altered gut microbiota is associated with resistance to chemo drugs or immune checkpoint inhibitors (ICIs), whereas supplementation of distinct bacterial species restores responses to the anticancer drugs. Accumulating evidence has revealed the potential of modulating the gut microbiota to enhance the efficacy of anticancer drugs. Regardless of the valuable findings by preclinical models and clinical data of patients with cancer, a more thorough understanding of the interactions of the microbiota with cancer therapy helps researchers identify novel strategy for cancer prevention, stratify patients for more effective treatment and reduce treatment complication. In this review, we discuss the scientific evidence on the role of gut microbiota in cancer treatment, and highlight the latest knowledge and technologies leveraged to target specific bacteria that contribute to tumourigenesis. First, we provide an overview of the role of the gut microbiota in cancer, establishing the links between bacteria, inflammation and cancer treatment. Second, we highlight the mechanisms used by distinct bacterial species to modulate cancer growth, immune responses, as well as the efficacy of chemotherapeutic drugs and ICIs. Third, we demonstrate various approaches to modulate the gut microbiota and their potential in translational research. Finally, we discuss the limitations of current microbiome research in the context of cancer treatment, ongoing efforts to overcome these challenges and future perspectives.
Background Altered microbiome composition and aberrant promoter hypermethylation of tumor suppressor genes (TSGs) are two important hallmarks of colorectal cancer (CRC). Here we performed concurrent 16S rRNA gene sequencing and methyl-CpG binding domain-based capture sequencing in 33 tissue biopsies (5 normal colonic mucosa tissues, 4 pairs of adenoma and adenoma-adjacent tissues, and 10 pairs of CRC and CRC-adjacent tissues) to identify significant associations between TSG promoter hypermethylation and CRC-associated bacteria, followed by functional validation of the methylation-associated bacteria. Results Fusobacterium nucleatum and Hungatella hathewayi were identified as the top two methylation-regulating bacteria. Targeted analysis on bona fide TSGs revealed that H. hathewayi and Streptococcus spp . significantly correlated with CDX2 and MLH1 promoter hypermethylation, respectively. Mechanistic validation with cell-line and animal models revealed that F. nucleatum and H. hathewayi upregulated DNA methyltransferase. H. hathewayi inoculation also promoted colonic epithelial cell proliferation in germ-free and conventional mice. Conclusion Our integrative analysis revealed previously unknown epigenetic regulation of TSGs in host cells through inducing DNA methyltransferase by F. nucleatum and H. hathewayi , and established the latter as CRC-promoting bacteria.
Background Currently, tRNA-derived small RNAs (tsRNAs) are recognized as a novel and potential type of non-coding RNAs (ncRNAs), which participate in various cellular processes and play an essential role in cancer progression. However, tsRNAs involvement in colorectal cancer (CRC) progression remains unclear. Methods Sequencing analyses were performed to explore the tsRNAs with differential expression in CRC. Gain- and loss-of functions of 5’tiRNA-His-GTG were performed in CRC cells and xenograft tumor to discover its role in the progression of CRC. Hypoxia culture and hypoxia inducible factor 1 subunit alpha (HIF1α) inhibitors were performed to uncover the biogenesis of 5’tiRNA-His-GTG. The regulation of 5’tiRNA-His-GTG for large tumor suppressor kinase 2 (LATS2) were identified by luciferase reporter assay, western blot, and rescue experiments. Results Here, our study uncovered the profile of tsRNAs in human CRC tissues and confirmed a specific tRNA half, 5’tiRNA-His-GTG, is upregulated in CRC tissues. Then, in vitro and in vivo experiments revealed the oncogenic role of 5’tiRNA-His-GTG in CRC and found that targeting 5’tiRNA-His-GTG can induce cell apoptosis. Mechanistically, the generation of 5’tiRNA-His-GTG seems to be a responsive process of tumor hypoxic microenvironment, and it is regulated via the HIF1α/angiogenin (ANG) axis. Remarkably, LATS2 was found to be an important and major target of 5’tiRNA-His-GTG, which renders 5’tiRNA-His-GTG to “turn off” hippo signaling pathway and finally promotes the expression of pro-proliferation and anti-apoptosis related genes. Conclusions In summary, the findings revealed a specific 5’tiRNA-His-GTG-engaged pathway in CRC progression and provided clues to design a novel therapeutic target in CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.