Allelic exclusion of immunoglobulin genes ensures the expression of a single antibody molecule in B cells through mostly unknown mechanisms. Large-scale contraction of the immunoglobulin heavy-chain (Igh) locus facilitates rearrangements between Igh variable (V H ) and diversity gene segments in pro-B cells. Here we show that these long-range interactions are mediated by 'looping' of individual Igh subdomains. The Igk locus also underwent contraction by looping in small pre-B and immature B cells, demonstrating that immunoglobulin loci are in a contracted state in rearranging cells. Successful Igh recombination induced the rapid reversal of locus contraction in response to pre-B cell receptor signaling, which physically separated the distal V H genes from the proximal Igh domain, thus preventing further rearrangements. In the absence of locus contraction, only the four most proximal V H genes escaped allelic exclusion in immature μ-transgenic B lymphocytes. Pre-B cell receptor signaling also led to rapid repositioning of one Igh allele to repressive centromeric domains in response to downregulation of interleukin 7 signaling. These data link both locus 'decontraction' and centromeric recruitment to the establishment of allelic exclusion at the Igh locus.The diverse antigen receptor repertoire of lymphocytes is generated by V(D)J recombination, which assembles the variable regions of immunoglobulin and T cell receptor genes from discontinuous variable (V), diversity (D) and joining (J) gene segments during B and T cell development1,2. These gene segments are flanked by recombination signal sequences that function as recognition sites for the V(D)J recombinase consisting of recombination activating gene 1 (RAG1) and RAG2 proteins. After pairing of two compatible recombination signal sequences, the RAG1-RAG2 complex introduces doublestrand DNA breaks between the recombination signal sequences and flanking gene segments, followed by processing and religation of the DNA ends by repair factors of the nonhomologous end-joining machinery1,2. V(D)J recombination is tightly controlled in a lineage-and stage-specific way. Immunoglobulin and T cell receptor genes are rearranged only in B and T lymphocytes, respectively1,2. In the B lymphoid lineage, the immunoglobulin heavy-chain (Igh) locus
A multiplex Luminex bead assay for the simultaneous detection of HNA-1, HNA-3, HNA-4 and HNA-5 alleles is described that enables rapid typing of donors to support HNA alloimmunized patients who require HNA-compatible blood products.
Acetylation of histones H4 and H3 targeted to promoters/enhancers is linked to the activation of transcription, whereas widespread, long range acetylation of the same histones has been linked to the requirement for open chromatin at transcriptionally active loci and regions of V(D)J recombination. Using affinity-purified polyclonal antibodies to tetra/tri-acetylated histone H2B in chromatin immunoprecipitation (ChIP) assays with mononucleosomes from 15-day chicken embryo erythrocytes, a high resolution distribution of H2B acetylation has been determined and compared with that of H4 and H3 at the same genes/loci. At the -globin locus, the H2B acetylation is high throughout and in general mirrors that of H3 and H4, consistent with the observation of co-precipitation of hyperacetylated H4 together with the hyperacetylated H2B. In contrast, at the weakly expressed genes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and Gas41 (housekeeping) and carbonic anhydrase (tissue specific), very little or no hyperacetylated H2B was found despite the presence of acetylated H4 and H3 at their promoters and proximal transcribed sequences. At the inactive lysozyme and ovalbumin genes essentially no acetylation of H2B, H3, or H4 was observed. Acetylation of H2B appears to be principally a feature of only the most actively transcribed genes/loci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.