This large study establishes deep V3 sequencing as a promising tool for identifying treatment-experienced individuals who could benefit from CCR5-antagonist-containing regimens.
Despite differences in sensitivity for predicting non-R5 HIV, week 8 and 24 week virological responses were similar in this treatment-experienced population. These findings suggest the potential utility of V3 genotyping as an accessible assay to select patients who may benefit from maraviroc treatment. Optimization of the predictive tropism algorithm may lead to further improvement in the clinical utility of HIV genotypic tropism assays.
Current default implementations of co-receptor prediction algorithms are inadequate for predicting HIV X4 co-receptor usage in clinical samples, particularly those X4 phenotypes with low CXCR4 RLU signals. Significant improvements can be made to genotypic predictors, including training on clinical samples, using additional data to improve predictions and optimizing cutoffs and increasing genotype sensitivity.
BackgroundThe impact of the emergence of drug-resistance mutations on mortality is not well characterized in antiretroviral-naïve patients first starting highly active antiretroviral therapy (HAART). Patients may be able to sustain immunologic function with resistant virus, and there is limited evidence that reduced sensitivity to antiretrovirals leads to rapid disease progression or death. We undertook the present analysis to characterize the determinants of mortality in a prospective cohort study with a median of nearly 5 y of follow-up. The objective of this study was to determine the impact of the emergence of drug-resistance mutations on survival among persons initiating HAART.Methods and FindingsParticipants were antiretroviral therapy naïve at entry and initiated triple combination antiretroviral therapy between August 1, 1996, and September 30, 1999. Marginal structural modeling was used to address potential confounding between time-dependent variables in the Cox proportional hazard regression models. In this analysis resistance to any class of drug was considered as a binary time-dependent exposure to the risk of death, controlling for the effect of other time-dependent confounders. We also considered each separate class of mutation as a binary time-dependent exposure, while controlling for the presence/absence of other mutations. A total of 207 deaths were identified among 1,138 participants over the follow-up period, with an all cause mortality rate of 18.2%. Among the 679 patients with HIV-drug-resistance genotyping done before initiating HAART, HIV-drug resistance to any class was observed in 53 (7.8%) of the patients. During follow-up, HIV-drug resistance to any class was observed in 302 (26.5%) participants. Emergence of any resistance was associated with mortality (hazard ratio: 1.75 [95% confidence interval: 1.27, 2.43]). When we considered each class of resistance separately, persons who exhibited resistance to non-nucleoside reverse transcriptase inhibitors had the highest risk: mortality rates were 3.02 times higher (95% confidence interval: 1.99, 4.57) for these patients than for those who did not exhibit this type of resistance.ConclusionsWe demonstrated that emergence of resistance to non-nucleoside reverse transcriptase inhibitors was associated with a greater risk of subsequent death than was emergence of protease inhibitor resistance. Future research is needed to identify the particular subpopulations of men and women at greatest risk and to elucidate the impact of resistance over a longer follow-up period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.