Laser probing remains invaluable to the semiconductor industry for isolating and diagnosing defects in silicon transistors in integrated circuits during electrical stress tests. However, continuous device miniaturization below the 20 nm technology node has crammed multiple transistors within the focal spot of the laser beam, resulting in signal crosstalk, poor beam positioning accuracy and degraded fault isolation capabilities. The challenge is analogous to focusing attention to a single speaker in a crowd despite the multiple simultaneous conversations in the background. Through algorithms introduced in this patented work, consisting of cross-correlations, clustering, and our previously developed combinational logic analysis, we achieved beam positioning accuracy to better than 10 nm, extracted electrooptic waveforms from a node of a group of transistors (~18 times beyond the optical resolution limit), and applied this to isolate and identify an actual fault on a defective device. While problems associated with probing with shorter wavelength lasers continue to be addressed, our approach enhances and enables the continued probing of ICs using sub-bandgap photon energies without hardware modification to existing technology at semiconductor technology nodes below 10 nm.
Short wavelength probing (SWP) uses wavelengths of light shorter than 1100 nm or energies higher than silicon bandgap for laser probing applications. While SWP allows a significant improvement to spatial resolution, there are aberrations to the collected laser probing waveforms which result in difficulties in signal interpretations. In this work, we assess the signals collected through SWP (785 nm) and introduce a photodiode model to explain the observations. We also present a successful case study using 785 nm for failure analysis in sub-20 nm FinFET technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.