Most C4 plants that naturally occur in tropical or subtropical climates, in high light environments, had to evolve a series of adaptations of photosynthesis that allowed them to grow under these conditions. In this review, we summarize mechanisms that ensure the balancing of energy distribution, counteract photoinhibition, and allow the dissipation of excess light energy. They secure effective electron transport in light reactions of photosynthesis, which will lead to the production of NADPH and ATP. Furthermore, a higher content of the cyclic electron transport components and an increase in ATP production are observed, which is necessary for the metabolism of C4 for effective assimilation of CO2. Most of the data are provided by studies of the genus Flaveria, where species belonging to different metabolic subtypes and intermediate forms between C3 and C4 are present. All described mechanisms that function in mesophyll and bundle sheath chloroplasts, into which photosynthetic reactions are divided, may differ in metabolic subtypes as a result of the different organization of thylakoid membranes, as well as the different demand for ATP and NADPH. This indicates that C4 plants have plasticity in the utilization of pathways in which efficient use and dissipation of excitation energy are realized.
The photosynthetic capacity of leaves is determined by their content of nitrogen (N). Nitrogen involved in photosynthesis is divided between soluble proteins and thylakoid membrane proteins. In C4 plants, the photosynthetic apparatus is partitioned between two cell types: mesophyll cells and bundle sheath. The enzymes involved in the C4 carbon cycle and assimilation of nitrogen are localized in a cell-specific manner. Although intracellular distribution of enzymes of N and carbon assimilation is variable, little is known about the physiological consequences of this distribution caused by light changes. Light intensity and nitrogen concentration influence content of nitrates in leaves and can induce activity of the main enzymes involved in N metabolism, and changes that reduce the photosynthesis rate also reduce photosynthetic N use efficiency. In this review, we wish to highlight and discuss how/whether light intensity can improve photosynthesis in maize during nitrogen limitation. We described the general regulation of changes in the main photosynthetic and nitrogen metabolism enzymes, their quantity and localization, thylakoid protein abundance, intracellular transport of organic acids as well as specific features connected with C4 photosynthesis, and addressed the major open questions related to N metabolism and effects of light on photosynthesis in C4 plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.