<span>This article presents a simple and efficient masking technique based on Chua chaotic system synchronization. It includes feeding the masked signal back to the master system and using it to drive the slave system for synchronization purposes. The proposed system is implemented in a field programmable gate array (FPGA) device using the Xilinx system generator tool. To achieve synchronization, the Pecora-Carroll identical cascading synchronization approach was used. The transmitted signal should be mixed or masked with a chaotic carrier and can be processed by the receiver without any distortion or loss. For different images, the security analysis is performed using the histogram, correlation coefficient, and entropy. In addition, FPGA hardware co-simulation based Xilinx Artix7 xc7a100t-1csg324 was used to check the reality of the encryption and decryption of the images.</span>
<span lang="EN-US">Image encryption is an important issue in protecting the content of images and in the area of information security. This article proposes a novel method for image encryption and decryption using the structure of the artificial neural network (ANN)-based chua chaotic system (CCS). This structure was efficiently designed on a field-programmable gate array (FPGA) chip utilizing the xilinx system generator (XSG) tool with the IEEE-754-1985 32-bit floating-point number format. For ANN-based CCS design, a multilayer feed forward neural network (FFNN) structure with three inputs and three outputs was created. This structure consists of one hidden layer with four neurons, each of which has a Tangent Sigmoid activation function. The training of ANN-based CCS yielded a 3.602e-13 mean square error (MSE) value. After successfully training the ANN-based CCS, the design was carried out on FPGA, utilizing the ANN structure's bias and weight values as a reference. The xilinx vivado (2017.4) design suite was used to synthesis and test the ANN-based CCS on the FPGA. The histogram, correlation coefficient, and entropy are used to perform security analysis on various images. Finally, FPGA hardware co-simulation using a Xilinx Artix7 xc7a100t-1csg324 chip was utilized to verify that the encryption and decryption of the images were successful.</span>
<p>This study aims to design a new architecture of the artificial neural networks (ANNs) using the Xilinx system generator (XSG) and its hardware co-simulation equivalent model using field programmable gate array (FPGA) to predict the behavior of Chua’s chaotic system and use it in hiding information. The work proposed consists of two main sections. In the first section, MATLAB R2016a was used to build a 3×4×3 feed forward neural network (FFNN). The training results demonstrate that FFNN training in the Bayesian regulation algorithm is sufficiently accurate to directly implement. The second section demonstrates the hardware implementation of the network with the XSG on the Xilinx artix7 xc7a100t-1csg324 chip. Finally, the message was first encrypted using a dynamic Chua system and then decrypted using ANN’s chaotic dynamics. ANN models were developed to implement hardware in the FPGA system using the IEEE 754 Single precision floating-point format. The ANN design method illustrated can be extended to other chaotic systems in general.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.