This study includes detailed information on the mechanical characteristics of the hardened concrete mix for normal concrete (NSC) and reactive powder concrete (RPC) after exposure to crude oil products. Two types of crude oil products (kerosene and gas oil) were investigated after exposure for a period of 180 days. The experimental program consisted of three sets of NSC and RPC specimens; after curing all concrete specimens for 28 days and 2 days to dry in the air, the first set of specimens was immersed in kerosene for 180 days and the second set was immersed in gas oil for the same age, while the third set was left in the air as a reference set (cured normally for 28 days and tested at the age of 180 days). The results showed that the mechanical characteristics of the RPC mix were not highly affected after exposure to each type of crude oil products, where it lost about (3.41–6.32 %) compared with reference RPC mix. While the NSC mix lost about (13.82–21.95 %) of its mechanical characteristics compared with reference NSC mix after exposure to crude oil products for the same period.
Cement is one of the essential construction materials required to develop concrete and mortar; therefore, it is vital in developing cities' infrastructure and maintaining human civilisation. However, cement production is recognised as a major source of many environmental problems, including air and water pollution. This paper, therefore, focused on the partial replacement (from 0 to 40%) of cement in the mortars with industrial by-products and on the application of ultrasonic waves as a sensing approach to evaluate the mechanical properties of the new cement mortar. The compressive strength of the eco-friendly mortar was measured at ages of 7, 14, and 28 days, and the results showed the best compressive strength of the eco-friendly mortar was 19.8 MPa at 28 days compared to 23.9 MPa of the reference mix. Additionally, a good agreement was noticed between the ultrasonic pulse velocity (UPV) and the compressive strength confirming the applicability of the UPV for compressive strength sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.