Wilkinson defined a sparse matrix as one with enough zeros that it pays to take advantage of them.1 This informal yet practical definition captures the essence of the goal of direct methods for solving sparse matrix problems. They exploit the sparsity of a matrix to solve problems economically: much faster and using far less memory than if all the entries of a matrix were stored and took part in explicit computations. These methods form the backbone of a wide range of problems in computational science. A glimpse of the breadth of applications relying on sparse solvers can be seen in the origins of matrices in published matrix benchmark collections (Duff and Reid 1979a, Duff, Grimes and Lewis 1989a, Davis and Hu 2011). The goal of this survey article is to impart a working knowledge of the underlying theory and practice of sparse direct methods for solving linear systems and least-squares problems, and to provide an overview of the algorithms, data structures, and software available to solve these problems, so that the reader can both understand the methods and know how best to use them.
This paper presents a low-rank decomposition algorithm assuming any matrix element can be computed in O(1) time. The proposed algorithm first computes rank-revealing decompositions of sub-matrices with a blocked adaptive cross approximation (BACA) algorithm, and then applies a hierarchical merge operation via truncated singular value decompositions (H-BACA). The proposed algorithm significantly improves the convergence of the baseline ACA algorithm and achieves reduced computational complexity compared to the full decompositions such as rank-revealing QR. Numerical results demonstrate the efficiency, accuracy and parallel scalability of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.