We have connected viscoelastic recovery (healing) in sliding wear to free volume in polymers by using pressure-volume-temperature (P-V-T) results and the Hartmann equation of state. A linear relationship was found for all polymers studied with a wide variety of chemical structures, except for polystyrene (PS). Examination of the effect of the indenter force level applied in sliding wear on the healing shows that recovery is practically independent of that level. Strain hardening in sliding wear was observed for all materials except PS, the exception attributed to brittleness. Therefore, we have formulated a quantitative definition of brittleness in terms of elongation at break and storage modulus. Further, we provide a formula relating the brittleness to sliding wear recovery; the formula is obeyed with high accuracy by all materials including PS. High recovery values correspond to low brittleness, and vice versa. Our definition of brittleness can be used as a design criterion for choosing polymers for specific applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.