Using a setup for testing a prototype for a satellite-borne cosmic-ray ion detector, we have operated a stack of scintillator and silicon detectors on top of the Princess Sirindhorn Neutron Monitor (PSNM), an NM64 detector at 2560-m altitude at Doi Inthanon, Thailand (18.59 • N, 98.49 • E). Monte Carlo simulations have indicated that about 15% of the neutron counts by PSNM are due to interactions (mostly in the lead producer) of GeV-range protons among the atmospheric secondary particles from cosmic ray showers, which can be detected by the scintillator and silicon detectors. Those detectors can provide a timing trigger for measurement of the propagation time distribution of such neutrons as they scatter and propagate through the NM64, processes that are similar whether the interaction was initiated by an energetic proton (for 15% of the count rate) or neutron (for 80% of the count rate). This propagation time distribution underlies the time delay distribution between successive neutron counts, from which we can determine the leader fraction (inverse multiplicity), which has been used to monitor Galactic cosmic ray spectral variations over ∼1-40 GV. Here we have measured and characterized the propagation time distribution from both the experimental setup and Monte Carlo simulations of atmospheric secondary particle detection. We confirm a known propagation time distribution with a peak (at ≈70 µs) and tail over a few ms, dominated by neutron counts. We fit this distribution using an analytic model of neutron diffusion and absorption, for both experimental and Monte Carlo results. In addition we identify a group of prompt neutron monitor pulses that arrive within 20 µs of the charged-particle trigger, of which a substantial fraction can be attributed to charged-particle ionization in a proportional counter, according to both experimental and Monte Carlo results. Prompt pulses, either due to neutrons or charged-particle ionization, are associated with much higher mean multiplicity than typical pulses. These results validate and point the way to some improvements in Monte Carlo simulations and the resulting yield functions used to interpret the neutron monitor count rate and leader fraction.
February, 2020Random number generation is important in many activities such as communication, encryption, science, gambling, finance, and decisionmaking. Quality of random numbers is critical in some applications, especially in cryptography, which require true randomness. In this work, we propose exploitation of a commercially-available quantum tunnelling diode as a source of true randomness. This off-the-shelf device is inexpensive and has a promising capability for future electronic integration at large-scale production.
Wafers with different epitaxial layer thicknesses of 12, 18, 20, 25, 30 and 40 µm and high resistivities ranging from 0.03 to 8.0 kΩ•cm have been investigated in this study. To verify their properties, surface resistivity measurement, scanning electron microscopy inspection and spreading resistance profiling have been performed. The results indicate that wafers with a 25-µm epitaxial thickness are well-suited to our requirements for use as a starting material for ALPIDE chip production in the ALICE ITS upgrade project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.