Secara definisi rumah tangga miskin dan penduduk miskin memiliki sudut pandang yang berbeda, dimana definisi rumah tangga miskin akan lebih ditekankan kepada individu yang akan dijadikan survey dalam menentukan penduduk miskin sedangkan penduduk miskin lebih kepada kumpulan dari beberapa rumah tangga miskin. Penelitian ini dilakukan untuk membandingkan antara algoritma K-Means dan Fuzzy Substractive Clustering (SFCM) dalam mengelompokkan rumah tangga miskin. Kedua algoritma ini akan dibandingkan berdasarkan simpangan baku dan validitas hasil pengelompokkan yang dihasilkan. Berdasarkan 6 pengujian yang telah dilakukan, maka didapatkan hasil bahwa dari sisi waktu algoritma K-Means mampu mengelompokkan lebih cepat bila dibandingkan dengan algoritma SFCM, namun dari sisi simpangan baku kelompok, simpangan baku antar kelompok, maupun akurasi maka algoritma SFCM memiliki performa yang lebih baik bila dibandingkan dengan algoritma K-Means
Pertambahan jumlah penduduk Indonesia serta meningkatkannya permintaan industri akan bawang merah yang tidak diimbangi dengan jumlah produksi mendorong pemerintah membuka impor bawang merah. Impor dilakukan untuk menjaga keseimbangan harga dan pasokan bawang merah sehingga inflasi yang diakibatkan kenaikan harga bawang merah dapat ditekan, namun impor yang tidak tepat jumlah akan mengakibatkan kerugian bagi pihak petani, perlu adanya sistem pendukung dalam menentukan volume impor guna menjaga keseimbangan harga pasar dan pemenuhan kebutuhan bawang merah. Sistem pendukung keputusan yang dirancang menerapkan Fuzzy Inference System (FIS) Tsukamoto. Sistem yang dirancang memungkinkan pengguna untuk melakukan training data dan testing data, proses dalam training data yaitu : 1)Clustering data latih, menggunakan algoritma K-Means 2)Ekstraksi Aturan, 3)Testing data latih, hitung nilai impor dengan fuzzy Tsukamoto, 4)Menganalisa error hasil fuzzy menggunakan MAPE(Means Absolute Percentage Error), 5)Testing Data Uji dan menganalisa hasil error data uji. Hasil Uji Model menunjukan penentuan impor bawang merah dengan parameter input harga petani, harga konsumen, produksi, konsumsi, harga impor dan kurs terhadap 60 data latih menghasilkan error terendah sebesar 0.07 pada 12 cluster, hasil uji mesin inferensi terhadap data uji menghasilkan error sebesar 0.25. Indonesian population growth and increase industrial demand shallot is not matched with number of production prompted the government to opened shallot imports. Import done to maintain the balance price and supply of shallot so inflation caused by rising prices of onion can be suppressed, but not the exact amount of imports would result in losses for the farmers, support system in determining volume imports is need to maintain balance of market price and needs of shallot. Decision support system designed to apply Fuzzy Inference System (FIS) Tsukamoto. The system is allows the user to perform the training data and testing data, the training process performs are: 1) Clustering training data, using the K-Means algorithm 2) Extraction Rule, 3) Testing data, calculate imports value by fuzzy Tsukamoto, 4) analyze the results error using MAPE (Means Absolute Percentage error), 5) testing test data and analyze the results error. The results show the determination of imported shallot with input parameters producer prices, consumer prices, production, consumption, import prices and the exchange rate against 60 training data produces the lowest error of 0:07 in 12 clusters, the inference engine test resulted in an error of 0.25.
Advances in Web 2.0 technology encourage the creation of personal website content involving sentiments such as blogs, tweets, web forums, and various types of social media. The Internet Movie Database (IMDb) is a website that provides information about films from around the world, including the people involved, nominations received, and reviews from visitors. The number of movies and reviews on IMDb causes users or visitors to check the reviews to find out the film rating, so it takes time for users who have no experience using IMDb. Sentiment analysis can be a solution to label positive and negative reviews. One of the algorithms used in sentiment analysis is the Support Vector Machine (SVM) algorithm. This study aimed to test the accuracy of the SVM algorithm in the classification of sentiment review films on IMDb. The tests carried out using the Support Vector Machine algorithm resulted in an accuracy value of 86.5%. The SVM algorithm can also produce a precision value of 90.67% and a recall value of 91.62%.
Rekomendasi penundaan pembayaran kuliah merupakan salah satu bentuk kebijakan yang diambil oleh suatu Perguruan Tinggi Swasta terhadap mahasiswanya. Ketika seorang mahasiswa mengajukan permohonan penundaan pembayaran maka secara tidak langsung bagian keuangan harus dapat mengklasifikasi mahasiswa yang akan membayar tepat waktu dan yang gagal bayar. Berdasarkan hal tersebut, maka penelitian ini bertujuan untuk mendapatkan nilai akurasi tertinggi melalui algoritma SVM dalam memberikan rekomendasi penundaan pembayaran kuliah secara tepat bagi mahasiswa. Untuk mendapatkan akurasi tertinggi, pengujian dilakukan melalui 2 cara dengan 6 scenario pengujian, berdasarkan hasil pengujian pertama (membandingan antara jumlah data training dan testing) diketahui bahwa nilai akurasi akan berbanding lurus dengan banyaknya jumlah data training yang digunakan. Selain itu pemilihan jenis kernel yang digunakan juga akan mempengaruhi besarnya nilai akurasi yang dihasilkan, dan hal ini sesuai dengan hasil pengujian kedua yang dilakukan.
Sistem rekomendasi adalah sistem yang mampu memberikan rekomendasi item-item yang mungkin disukai oleh pengguna. Metode Collaborative Filtering merupakan salah satu metode pada sistem rekomendasi. Metode ini memanfaatkan penilaian pengguna berupa rating untuk memprediksi item yang mungkin diminati. Berdasarkan rating pengguna dari 1 - 5, nilai kemiripan dihitung menggunakan adjusted cosine similarity. Berdasarkan nilai kemiripan antar makanan, nilai prediksi rating makanan dicari menggunakan weighted sum. Penelitian ini menggunakan 23 makanan dan 22 pengguna sebagai data. Dalam mengimplementasikan metode item - based collaborative filtering, penulis melakukan metode pengumpulan data, perancangan tampilan, melakukan perhitungan manual, pembangunan sistem dan implementasi metode item - based collaborative filtering, melakukan pengujian MAE, pengujian Confusion Matrix, dan pengujian F1 Score. Dari hasil pengujian yang telah dilakukan diperoleh prediksi yang cukup akurat dengan 6 neighbor dan akurasi 83 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.