Aims:The purposes of this study were to determine the anticancer activity of Xestospongia testudinaria sponge isolate and identify the responsible compounds.Materials and Methods:The metabolites were extracted using methanol maceration at room temperature. The separation and purification of metabolites were performed using fractionation and column chromatography. The toxicity was examined using the brine shrimp lethality assay, and the toxic isolates were tested for anticancer activity against HeLa cells. Gas chromatography-mass spectrometry analysis was used to identify the compounds in the isolate.Results:When the methanol extract was partitioned with n-hexane, chloroform, and n-butanol, the chloroform fraction was the most toxic, with a concentration that results in 50% lethality (LC50) value of 39.81 ppm. After separation of the chloroform extract, fraction B (FB) was the most toxic, with an LC50 value of 44.67 ppm. The isolate from FB showed anticancer activity with a concentration at which 50% of growth was inhibited (IC50) of 2.273 ppm. In total, 21 compounds were identified in anticancer isolates: Nonanedioic acid; tetradecanoic acid; trans-phytol; 2-pentadecanone-6,10,14-trimethyl; pentadecanoic acid; 2-hexadecen-1-ol, 3,7,11,15-tetramethyl-; pentadecanoic acid; 2-hexadecen-1-ol, 3,7,11,15-tetramethyl-; 2,3,7-trimethyloctanal; palmitic acid; docosanoic acid, ethyl ester; 1,E-11,Z-13-octadecatriene; chloromethyl 4-chlorododecanoate; 1-tricosene; 9,12-octadecadienoic acid; 4,8,12,16-tetramethylheptadecan-4-olide; 1-docosene; heneicosane; phosphonic acid, dioctadecyl ester; dodecane,4,6-dimethyl-; n-tetratriacontane; 1-iodohexadecane; and n-heneicosane.Conclusion:These findings indicate that the isolate of X. testudinaria can be used as a natural anticancer toward HeLa cell.
Total flavonoid and phenolic contents in some natural products was suspected of having a positive correlation to its activity in inhibiting the growth of bacteria. The aim of this study was to determine the total flavonoid and phenolic contents of n-butanol extract of Samanea saman leaf, and to evaluate the antibacterial activity towards Escherechia coli and Staphylococcus aureus. Extraction of compounds was done by ethanol 96%, followed by fractionation into n-hexane, ethyl acetate, and n-butanol. Determination of total flavonoid and phenolic contents was done by UV-Vis Spectrophotometer using standard of quersetin and galic acid respectively. In addition, antibacterial activity was evaluated by agar disc diffusion method. Extraction of 1000 g of Samanea saman leaf was obtained 80 g of ethanol extracts, fractionation of the extract was obtained 8.02 g of n-hexane extracts, 7.11 g of ethyl acetate extracts, 13.5 g of n-butanol extracts, and 14.16 g of aqueous extracts. Phytochemical screening of the n-butanol extracts revealed the presence of flavonoid and phenolic compounds. Total flavonoid and phenolic contents were successively 43.5798 mg QE/100g and 34.0180 mg GAE/100g. The butanol extracts inhibited the growth of S.aureus higher than the growth of E.coli. At the concentration of 2, 4, 6, 8 % (b/v), and positive control (meropenem 10 g/disc), inhibition zone towards S.
Acorus calamus L. rhizome was trusted having antibacterial activity. This study aimed to identify the compounds in the Acorus Calamus L. rhizomes essential oils and to recognize the antifungal activity of the oils against Candida albicans. The extraction of essential oils from rhizome was carried out by steam distillation technique. Identification of compounds in the oils was conducted by Gas Chromatography- Mass Spectroscopy (GCMS), while the antifungal test against Candida albicans was done by well diffusion method. Extraction of 10 kg of rhizomes produced 16.53 mL essential oil with a yield of 0.1653% (? = 1.066), the oil was brownish yellow and very flavorful. GC-MS analysis showed that the essential oil contained 11 compounds, they are (E)-3,7 dimethyl-1,3,6-Octatriene (trans-?-Ocimene) (3,73%), linalool (1,07%), ?-elemene (1,15%), trans methyl isoeugenol (7,68%), shyobunon (15,74%), bicyclogermakren (0,93%), dehidroxy-isocalamendiol (2,61%), ?-calacorene (3,34%), euasarone (26,84), cis-asarone (18,62%); dan trans- asarone (18,29%). Antifungal activity test showed that the growth and biomass inhibition of C. albicans increased with the increase of the oil concentration. Minimum Inhibitory Concentration (MIC) of essential oil toward C. albicans was 1% with the inhibition of 7.83 mm.
Antibacterial activity of Samanea saman usually shows a positif correlation to the flavonoid and phenolic contents. The aim of this study was to evaluate the antibacterial activity of the ethanol extract of Samanea saman against Escherechia coli and Staphylococcus aureus and determine the total flavonoid and phenolic contents of the extract. The extraction was done by ethanol 96% at room temperature. The antibacterial assay was conducted by agar disc diffusion method. The total flavonoid and phenolic contents were determined by UV-Vis Spectrofotometer with the standard of quersetin and galic acid, respectively. The extraction of 250 g of Samanea saman leaves resulted in 24.5 g of ethanol extracts. The ethanol extract showed a moderate inhibition of 8.33 mm towards E. coli and a strong inhibition of 13.6 mm towards S. aureus at the concentration of 4%. The Minimum Inhibitory Concentration (MIC) of the extract against E. coli and S.aureus were of 3% and 0.3%”, respectively. The total flavonoid and phenolic contents were successively 1233.2991 mg QE/100g and 2544.6154 mg GAE/100g. Keywords: Escherechia coli, flavonoid and phenolic content, Samanea saman, Staphylococcus aureus
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.