Informatics study program at Nurul Jadid University does not have a general concentration of knowledge, so that sometimes the selection of elective courses by students is not quite right. This study aims to classify the concentration of knowledge with a data mining approach which can then be used as a recommendation for selecting elective courses by students. In this study, we implement a machine learning algorithm to provide recommendations to students regarding what interests are more suitable to be taken based on the values of prerequisite courses in previous semesters. Student data was obtained from the Head of the Center for Data and Information Systems (PDSI) at Nurul Jadid University with 70 student data from Nurul Jadid University batch 2018. The machine learning algorithm used is Neural Network with Python programming language, the tools used are Google Collab. At the beginning of data collection, then pre-processing is carried out to prepare the dataset in order to get good results, and model training is carried out. After training on the model, then further testing is carried out on the model to determine the performance of the model. The result of the accuracy value in the training model process is 0.83 or 83% and the accuracy of the test data is 0.79 or 79%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.